Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI

Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-08, Vol.16 (8), p.e0256252-e0256252
Hauptverfasser: van Zandwijk, Jordy K, Simonis, Frank F J, Heslinga, Friso G, Hofmeijer, Elfi I S, Geelkerken, Robert H, Ten Haken, Bennie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0256252
container_issue 8
container_start_page e0256252
container_title PloS one
container_volume 16
creator van Zandwijk, Jordy K
Simonis, Frank F J
Heslinga, Friso G
Hofmeijer, Elfi I S
Geelkerken, Robert H
Ten Haken, Bennie
description Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0-15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.
doi_str_mv 10.1371/journal.pone.0256252
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2562226223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A672365768</galeid><doaj_id>oai_doaj_org_article_4f3402e4a57044098b77329ac482f9cd</doaj_id><sourcerecordid>A672365768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ecf2c162af4c23d924bca9a3593bdd524b83872fff0147ded036b1b249339f873</originalsourceid><addsrcrecordid>eNqNU12L1DAULaK46-o_EA0Iog8d0yRN2xdhGfwYWFlYP15Dmo9OhjSZTVpd_72p012msg9SLk1uzjk3OZebZc8LuCpwVbzb-TE4bld779QKopKiEj3ITosGo5wiiB8erU-yJzHuICxxTenj7AQTAlOg08ytfb_nwbgODFsFoumSJlBuy51QvXID8Bpw0HHprXFm7EHLo5KAuymACd7l_sZINeeFd0PgcQC8m8jGAet_5dooK8GXq83T7JHmNqpn8_8s-_7xw7f15_zi8tNmfX6RC9qgIVdCI1FQxDURCMsGkVbwhuOywa2UZdrWuK6Q1hoWpJJKQkzbokWkwbjRdYXPspcH3b31kc1WRTa5hFAKnBCbA0J6vmP7YHoefjPPDfub8KFjPAxGWMWIxgQiRXhZwWRcU7dVhVHDBamRboRMWu_namPbKynU5IFdiC5PnNmyzv9kNa4gJXUSeDMLBH89qjiw3kShrOVO-fFw7xIVtJnu_eof6P2vm1EdTw8wTvtUV0yi7JxWCNOyolPZ1T2o9EnVm9RJpU3KLwhvF4Sp2-pm6PgYI9t8vfp_7OWPJfb1EXaruB220dtxMN7FJZAcgCL4GIPSdyYXkE1jcesGm8aCzWORaC-OG3RHup0D_AcdWQbS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562226223</pqid></control><display><type>article</type><title>Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Zandwijk, Jordy K ; Simonis, Frank F J ; Heslinga, Friso G ; Hofmeijer, Elfi I S ; Geelkerken, Robert H ; Ten Haken, Bennie</creator><contributor>Vegh, Viktor</contributor><creatorcontrib>van Zandwijk, Jordy K ; Simonis, Frank F J ; Heslinga, Friso G ; Hofmeijer, Elfi I S ; Geelkerken, Robert H ; Ten Haken, Bennie ; Vegh, Viktor</creatorcontrib><description>Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0-15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0256252</identifier><identifier>PMID: 34403442</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Biology and Life Sciences ; Blood - diagnostic imaging ; Cattle ; Computer Simulation ; Contrast agents ; Contrast media ; Contrast Media - chemistry ; Evaluation ; Ferrosoferric Oxide - chemistry ; Field strength ; Gadolinium ; Heterocyclic Compounds - chemistry ; Humans ; Investigations ; Iron ; Low concentrations ; Magnetic fields ; Magnetic properties ; Magnetic resonance imaging ; Magnetic Resonance Imaging - methods ; Medical imaging ; Medicine and Health Sciences ; Organometallic Compounds - chemistry ; Phantoms, Imaging ; Physical Sciences ; Research and Analysis Methods ; Scanners ; Simulation ; Supervision ; Vascular surgery</subject><ispartof>PloS one, 2021-08, Vol.16 (8), p.e0256252-e0256252</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 van Zandwijk et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 van Zandwijk et al 2021 van Zandwijk et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ecf2c162af4c23d924bca9a3593bdd524b83872fff0147ded036b1b249339f873</citedby><cites>FETCH-LOGICAL-c692t-ecf2c162af4c23d924bca9a3593bdd524b83872fff0147ded036b1b249339f873</cites><orcidid>0000-0002-6393-0139 ; 0000-0002-4492-311X ; 0000-0002-0734-1778</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370648/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8370648/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34403442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Vegh, Viktor</contributor><creatorcontrib>van Zandwijk, Jordy K</creatorcontrib><creatorcontrib>Simonis, Frank F J</creatorcontrib><creatorcontrib>Heslinga, Friso G</creatorcontrib><creatorcontrib>Hofmeijer, Elfi I S</creatorcontrib><creatorcontrib>Geelkerken, Robert H</creatorcontrib><creatorcontrib>Ten Haken, Bennie</creatorcontrib><title>Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0-15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.</description><subject>Analysis</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Blood - diagnostic imaging</subject><subject>Cattle</subject><subject>Computer Simulation</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast Media - chemistry</subject><subject>Evaluation</subject><subject>Ferrosoferric Oxide - chemistry</subject><subject>Field strength</subject><subject>Gadolinium</subject><subject>Heterocyclic Compounds - chemistry</subject><subject>Humans</subject><subject>Investigations</subject><subject>Iron</subject><subject>Low concentrations</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical imaging</subject><subject>Medicine and Health Sciences</subject><subject>Organometallic Compounds - chemistry</subject><subject>Phantoms, Imaging</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Scanners</subject><subject>Simulation</subject><subject>Supervision</subject><subject>Vascular surgery</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNU12L1DAULaK46-o_EA0Iog8d0yRN2xdhGfwYWFlYP15Dmo9OhjSZTVpd_72p012msg9SLk1uzjk3OZebZc8LuCpwVbzb-TE4bld779QKopKiEj3ITosGo5wiiB8erU-yJzHuICxxTenj7AQTAlOg08ytfb_nwbgODFsFoumSJlBuy51QvXID8Bpw0HHprXFm7EHLo5KAuymACd7l_sZINeeFd0PgcQC8m8jGAet_5dooK8GXq83T7JHmNqpn8_8s-_7xw7f15_zi8tNmfX6RC9qgIVdCI1FQxDURCMsGkVbwhuOywa2UZdrWuK6Q1hoWpJJKQkzbokWkwbjRdYXPspcH3b31kc1WRTa5hFAKnBCbA0J6vmP7YHoefjPPDfub8KFjPAxGWMWIxgQiRXhZwWRcU7dVhVHDBamRboRMWu_namPbKynU5IFdiC5PnNmyzv9kNa4gJXUSeDMLBH89qjiw3kShrOVO-fFw7xIVtJnu_eof6P2vm1EdTw8wTvtUV0yi7JxWCNOyolPZ1T2o9EnVm9RJpU3KLwhvF4Sp2-pm6PgYI9t8vfp_7OWPJfb1EXaruB220dtxMN7FJZAcgCL4GIPSdyYXkE1jcesGm8aCzWORaC-OG3RHup0D_AcdWQbS</recordid><startdate>20210817</startdate><enddate>20210817</enddate><creator>van Zandwijk, Jordy K</creator><creator>Simonis, Frank F J</creator><creator>Heslinga, Friso G</creator><creator>Hofmeijer, Elfi I S</creator><creator>Geelkerken, Robert H</creator><creator>Ten Haken, Bennie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6393-0139</orcidid><orcidid>https://orcid.org/0000-0002-4492-311X</orcidid><orcidid>https://orcid.org/0000-0002-0734-1778</orcidid></search><sort><creationdate>20210817</creationdate><title>Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI</title><author>van Zandwijk, Jordy K ; Simonis, Frank F J ; Heslinga, Friso G ; Hofmeijer, Elfi I S ; Geelkerken, Robert H ; Ten Haken, Bennie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ecf2c162af4c23d924bca9a3593bdd524b83872fff0147ded036b1b249339f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Blood - diagnostic imaging</topic><topic>Cattle</topic><topic>Computer Simulation</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast Media - chemistry</topic><topic>Evaluation</topic><topic>Ferrosoferric Oxide - chemistry</topic><topic>Field strength</topic><topic>Gadolinium</topic><topic>Heterocyclic Compounds - chemistry</topic><topic>Humans</topic><topic>Investigations</topic><topic>Iron</topic><topic>Low concentrations</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical imaging</topic><topic>Medicine and Health Sciences</topic><topic>Organometallic Compounds - chemistry</topic><topic>Phantoms, Imaging</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Scanners</topic><topic>Simulation</topic><topic>Supervision</topic><topic>Vascular surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Zandwijk, Jordy K</creatorcontrib><creatorcontrib>Simonis, Frank F J</creatorcontrib><creatorcontrib>Heslinga, Friso G</creatorcontrib><creatorcontrib>Hofmeijer, Elfi I S</creatorcontrib><creatorcontrib>Geelkerken, Robert H</creatorcontrib><creatorcontrib>Ten Haken, Bennie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Zandwijk, Jordy K</au><au>Simonis, Frank F J</au><au>Heslinga, Friso G</au><au>Hofmeijer, Elfi I S</au><au>Geelkerken, Robert H</au><au>Ten Haken, Bennie</au><au>Vegh, Viktor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-08-17</date><risdate>2021</risdate><volume>16</volume><issue>8</issue><spage>e0256252</spage><epage>e0256252</epage><pages>e0256252-e0256252</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0-15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34403442</pmid><doi>10.1371/journal.pone.0256252</doi><tpages>e0256252</tpages><orcidid>https://orcid.org/0000-0002-6393-0139</orcidid><orcidid>https://orcid.org/0000-0002-4492-311X</orcidid><orcidid>https://orcid.org/0000-0002-0734-1778</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-08, Vol.16 (8), p.e0256252-e0256252
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2562226223
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Biology and Life Sciences
Blood - diagnostic imaging
Cattle
Computer Simulation
Contrast agents
Contrast media
Contrast Media - chemistry
Evaluation
Ferrosoferric Oxide - chemistry
Field strength
Gadolinium
Heterocyclic Compounds - chemistry
Humans
Investigations
Iron
Low concentrations
Magnetic fields
Magnetic properties
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Medicine and Health Sciences
Organometallic Compounds - chemistry
Phantoms, Imaging
Physical Sciences
Research and Analysis Methods
Scanners
Simulation
Supervision
Vascular surgery
title Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20the%20signal%20enhancement%20of%20a%20gadolinium%20based%20and%20an%20iron-oxide%20based%20contrast%20agent%20in%20low-field%20MRI&rft.jtitle=PloS%20one&rft.au=van%20Zandwijk,%20Jordy%20K&rft.date=2021-08-17&rft.volume=16&rft.issue=8&rft.spage=e0256252&rft.epage=e0256252&rft.pages=e0256252-e0256252&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0256252&rft_dat=%3Cgale_plos_%3EA672365768%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562226223&rft_id=info:pmid/34403442&rft_galeid=A672365768&rft_doaj_id=oai_doaj_org_article_4f3402e4a57044098b77329ac482f9cd&rfr_iscdi=true