Multidimensional analysis of immune responses identified biomarkers of recent Mycobacterium tuberculosis infection
The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targ...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-07, Vol.17 (7), p.e1009197-e1009197 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009197 |
---|---|
container_issue | 7 |
container_start_page | e1009197 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Lloyd, Tessa Steigler, Pia Mpande, Cheleka A. M Rozot, Virginie Mosito, Boitumelo Schreuder, Constance Reid, Timothy D Hatherill, Mark Scriba, Thomas J Little, Francesca Nemes, Elisa |
description | The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test X.sup.2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models. |
doi_str_mv | 10.1371/journal.pcbi.1009197 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561943874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670982713</galeid><doaj_id>oai_doaj_org_article_e07ec24e3ad3499d97f5ebf49fc564d4</doaj_id><sourcerecordid>A670982713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-b7c523827c8bb13557a7ff23441d11034aec27e6a4e827ae2109870e720fb7753</originalsourceid><addsrcrecordid>eNqVkt-L1DAQx4so3nn6HwgWfPEedk2apGlehOPwdOFOwR_PIU0na9a22Utacf97p7dVrNyLBJIw-eQ7M18my55TsqZM0te7MMbetOu9rf2aEqKokg-yUyoEW0kmqod_3U-yJyntCMGrKh9nJ4wzqlRVnWbxZmwH3_gO-uQD6uUGt0PyKQ8u91039pBHSPvQJ0i5b6AfvPPQ5LUPnYnfId6RESy-5DcHG2pjB4h-7PJhrCHasQ2TnO8d2AFzPM0eOdMmeDafZ9nXq7dfLt-vrj--21xeXK9syaphVUsrClYV0lZ1TZkQ0kjnCsY5bSgljBuwhYTScEDIQEGJqiQBWRBXSynYWfbiqLvHAvRsV9KFKKnirJIcic2RaILZ6X302NBBB-P1XSDErTZx8LYFDURiOg7MNIwr1SjpBNSOK2dFyZtJ682cbaw7aCY3omkXosuX3n_T2_BDV0xQVUgUeDULxHA7Qhp055OFtjU9hHGqW6AvsqIloi__Qe_vbqa2BhtA-wPmtZOoviglmlVIypBa30PhaqDzNvTgPMYXH84XH5AZ4OewNWNKevP503-wH5YsP7I2hpQiuD_eUaKnif_dpJ4mXs8Tz34BN6H0uQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561943874</pqid></control><display><type>article</type><title>Multidimensional analysis of immune responses identified biomarkers of recent Mycobacterium tuberculosis infection</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Lloyd, Tessa ; Steigler, Pia ; Mpande, Cheleka A. M ; Rozot, Virginie ; Mosito, Boitumelo ; Schreuder, Constance ; Reid, Timothy D ; Hatherill, Mark ; Scriba, Thomas J ; Little, Francesca ; Nemes, Elisa</creator><contributor>Sokolovska, Nataliya</contributor><creatorcontrib>Lloyd, Tessa ; Steigler, Pia ; Mpande, Cheleka A. M ; Rozot, Virginie ; Mosito, Boitumelo ; Schreuder, Constance ; Reid, Timothy D ; Hatherill, Mark ; Scriba, Thomas J ; Little, Francesca ; Nemes, Elisa ; the ACS Study Team ; Sokolovska, Nataliya</creatorcontrib><description>The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test X.sup.2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009197</identifier><identifier>PMID: 34319988</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Adaptive systems ; Algorithms ; Antigens ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Causes of ; CD4 antigen ; Cell activation ; Chi-square test ; Cytokines ; Data integration ; Datasets ; Decision making ; Decision trees ; Diagnosis ; Diagnostic systems ; Diagnostic tests ; Factor analysis ; Health aspects ; Health risks ; Histocompatibility antigen HLA ; Immune response ; Immune system ; Infections ; Integration ; Likelihood ratio ; Lymphocytes ; Lymphocytes T ; Mathematical models ; Medicine and Health Sciences ; Mycobacterium tuberculosis ; Parameter estimation ; Performance prediction ; Regression analysis ; Regression models ; Statistical analysis ; Statistical tests ; Tuberculosis ; Variables</subject><ispartof>PLoS computational biology, 2021-07, Vol.17 (7), p.e1009197-e1009197</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Lloyd et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Lloyd et al 2021 Lloyd et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-b7c523827c8bb13557a7ff23441d11034aec27e6a4e827ae2109870e720fb7753</citedby><cites>FETCH-LOGICAL-c638t-b7c523827c8bb13557a7ff23441d11034aec27e6a4e827ae2109870e720fb7753</cites><orcidid>0000-0001-8948-1493 ; 0000-0003-3438-2214 ; 0000-0003-3491-1809 ; 0000-0001-7658-6157 ; 0000-0003-1662-4961 ; 0000-0001-9757-1501 ; 0000-0002-0641-1359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351927/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8351927/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids></links><search><contributor>Sokolovska, Nataliya</contributor><creatorcontrib>Lloyd, Tessa</creatorcontrib><creatorcontrib>Steigler, Pia</creatorcontrib><creatorcontrib>Mpande, Cheleka A. M</creatorcontrib><creatorcontrib>Rozot, Virginie</creatorcontrib><creatorcontrib>Mosito, Boitumelo</creatorcontrib><creatorcontrib>Schreuder, Constance</creatorcontrib><creatorcontrib>Reid, Timothy D</creatorcontrib><creatorcontrib>Hatherill, Mark</creatorcontrib><creatorcontrib>Scriba, Thomas J</creatorcontrib><creatorcontrib>Little, Francesca</creatorcontrib><creatorcontrib>Nemes, Elisa</creatorcontrib><creatorcontrib>the ACS Study Team</creatorcontrib><title>Multidimensional analysis of immune responses identified biomarkers of recent Mycobacterium tuberculosis infection</title><title>PLoS computational biology</title><description>The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test X.sup.2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models.</description><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Antigens</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Causes of</subject><subject>CD4 antigen</subject><subject>Cell activation</subject><subject>Chi-square test</subject><subject>Cytokines</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diagnostic tests</subject><subject>Factor analysis</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Histocompatibility antigen HLA</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Infections</subject><subject>Integration</subject><subject>Likelihood ratio</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Mycobacterium tuberculosis</subject><subject>Parameter estimation</subject><subject>Performance prediction</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical tests</subject><subject>Tuberculosis</subject><subject>Variables</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkt-L1DAQx4so3nn6HwgWfPEedk2apGlehOPwdOFOwR_PIU0na9a22Utacf97p7dVrNyLBJIw-eQ7M18my55TsqZM0te7MMbetOu9rf2aEqKokg-yUyoEW0kmqod_3U-yJyntCMGrKh9nJ4wzqlRVnWbxZmwH3_gO-uQD6uUGt0PyKQ8u91039pBHSPvQJ0i5b6AfvPPQ5LUPnYnfId6RESy-5DcHG2pjB4h-7PJhrCHasQ2TnO8d2AFzPM0eOdMmeDafZ9nXq7dfLt-vrj--21xeXK9syaphVUsrClYV0lZ1TZkQ0kjnCsY5bSgljBuwhYTScEDIQEGJqiQBWRBXSynYWfbiqLvHAvRsV9KFKKnirJIcic2RaILZ6X302NBBB-P1XSDErTZx8LYFDURiOg7MNIwr1SjpBNSOK2dFyZtJ682cbaw7aCY3omkXosuX3n_T2_BDV0xQVUgUeDULxHA7Qhp055OFtjU9hHGqW6AvsqIloi__Qe_vbqa2BhtA-wPmtZOoviglmlVIypBa30PhaqDzNvTgPMYXH84XH5AZ4OewNWNKevP503-wH5YsP7I2hpQiuD_eUaKnif_dpJ4mXs8Tz34BN6H0uQ</recordid><startdate>20210728</startdate><enddate>20210728</enddate><creator>Lloyd, Tessa</creator><creator>Steigler, Pia</creator><creator>Mpande, Cheleka A. M</creator><creator>Rozot, Virginie</creator><creator>Mosito, Boitumelo</creator><creator>Schreuder, Constance</creator><creator>Reid, Timothy D</creator><creator>Hatherill, Mark</creator><creator>Scriba, Thomas J</creator><creator>Little, Francesca</creator><creator>Nemes, Elisa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8948-1493</orcidid><orcidid>https://orcid.org/0000-0003-3438-2214</orcidid><orcidid>https://orcid.org/0000-0003-3491-1809</orcidid><orcidid>https://orcid.org/0000-0001-7658-6157</orcidid><orcidid>https://orcid.org/0000-0003-1662-4961</orcidid><orcidid>https://orcid.org/0000-0001-9757-1501</orcidid><orcidid>https://orcid.org/0000-0002-0641-1359</orcidid></search><sort><creationdate>20210728</creationdate><title>Multidimensional analysis of immune responses identified biomarkers of recent Mycobacterium tuberculosis infection</title><author>Lloyd, Tessa ; Steigler, Pia ; Mpande, Cheleka A. M ; Rozot, Virginie ; Mosito, Boitumelo ; Schreuder, Constance ; Reid, Timothy D ; Hatherill, Mark ; Scriba, Thomas J ; Little, Francesca ; Nemes, Elisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-b7c523827c8bb13557a7ff23441d11034aec27e6a4e827ae2109870e720fb7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Antigens</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Causes of</topic><topic>CD4 antigen</topic><topic>Cell activation</topic><topic>Chi-square test</topic><topic>Cytokines</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diagnostic tests</topic><topic>Factor analysis</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Histocompatibility antigen HLA</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Infections</topic><topic>Integration</topic><topic>Likelihood ratio</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Mycobacterium tuberculosis</topic><topic>Parameter estimation</topic><topic>Performance prediction</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical tests</topic><topic>Tuberculosis</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Tessa</creatorcontrib><creatorcontrib>Steigler, Pia</creatorcontrib><creatorcontrib>Mpande, Cheleka A. M</creatorcontrib><creatorcontrib>Rozot, Virginie</creatorcontrib><creatorcontrib>Mosito, Boitumelo</creatorcontrib><creatorcontrib>Schreuder, Constance</creatorcontrib><creatorcontrib>Reid, Timothy D</creatorcontrib><creatorcontrib>Hatherill, Mark</creatorcontrib><creatorcontrib>Scriba, Thomas J</creatorcontrib><creatorcontrib>Little, Francesca</creatorcontrib><creatorcontrib>Nemes, Elisa</creatorcontrib><creatorcontrib>the ACS Study Team</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Tessa</au><au>Steigler, Pia</au><au>Mpande, Cheleka A. M</au><au>Rozot, Virginie</au><au>Mosito, Boitumelo</au><au>Schreuder, Constance</au><au>Reid, Timothy D</au><au>Hatherill, Mark</au><au>Scriba, Thomas J</au><au>Little, Francesca</au><au>Nemes, Elisa</au><au>Sokolovska, Nataliya</au><aucorp>the ACS Study Team</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional analysis of immune responses identified biomarkers of recent Mycobacterium tuberculosis infection</atitle><jtitle>PLoS computational biology</jtitle><date>2021-07-28</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>e1009197</spage><epage>e1009197</epage><pages>e1009197-e1009197</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The risk of tuberculosis (TB) disease is higher in individuals with recent Mycobacterium tuberculosis (M.tb) infection compared to individuals with more remote, established infection. We aimed to define blood-based biomarkers to distinguish between recent and remote infection, which would allow targeting of recently infected individuals for preventive TB treatment. We hypothesized that integration of multiple immune measurements would outperform the diagnostic performance of a single biomarker. Analysis was performed on different components of the immune system, including adaptive and innate responses to mycobacteria, measured on recently and remotely M.tb infected adolescents. The datasets were standardized using variance stabilizing scaling and missing values were imputed using a multiple factor analysis-based approach. For data integration, we compared the performance of a Multiple Tuning Parameter Elastic Net (MTP-EN) to a standard EN model, which was built to the individual adaptive and innate datasets. Biomarkers with non-zero coefficients from the optimal single data EN models were then isolated to build logistic regression models. A decision tree and random forest model were used for statistical confirmation. We found no difference in the predictive performances of the optimal MTP-EN model and the EN model [average area under the receiver operating curve (AUROC) = 0.93]. EN models built to the integrated dataset and the adaptive dataset yielded identically high AUROC values (average AUROC = 0.91), while the innate data EN model performed poorly (average AUROC = 0.62). Results also indicated that integration of adaptive and innate biomarkers did not outperform the adaptive biomarkers alone (Likelihood Ratio Test X.sup.2 = 6.09, p = 0.808). From a total of 193 variables, the level of HLA-DR on ESAT6/CFP10-specific Th1 cytokine-expressing CD4 cells was the strongest biomarker for recent M.tb infection. The discriminatory ability of this variable was confirmed in both tree-based models.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34319988</pmid><doi>10.1371/journal.pcbi.1009197</doi><orcidid>https://orcid.org/0000-0001-8948-1493</orcidid><orcidid>https://orcid.org/0000-0003-3438-2214</orcidid><orcidid>https://orcid.org/0000-0003-3491-1809</orcidid><orcidid>https://orcid.org/0000-0001-7658-6157</orcidid><orcidid>https://orcid.org/0000-0003-1662-4961</orcidid><orcidid>https://orcid.org/0000-0001-9757-1501</orcidid><orcidid>https://orcid.org/0000-0002-0641-1359</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-07, Vol.17 (7), p.e1009197-e1009197 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2561943874 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Adaptive systems Algorithms Antigens Biological markers Biology and Life Sciences Biomarkers Causes of CD4 antigen Cell activation Chi-square test Cytokines Data integration Datasets Decision making Decision trees Diagnosis Diagnostic systems Diagnostic tests Factor analysis Health aspects Health risks Histocompatibility antigen HLA Immune response Immune system Infections Integration Likelihood ratio Lymphocytes Lymphocytes T Mathematical models Medicine and Health Sciences Mycobacterium tuberculosis Parameter estimation Performance prediction Regression analysis Regression models Statistical analysis Statistical tests Tuberculosis Variables |
title | Multidimensional analysis of immune responses identified biomarkers of recent Mycobacterium tuberculosis infection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20analysis%20of%20immune%20responses%20identified%20biomarkers%20of%20recent%20Mycobacterium%20tuberculosis%20infection&rft.jtitle=PLoS%20computational%20biology&rft.au=Lloyd,%20Tessa&rft.aucorp=the%20ACS%20Study%20Team&rft.date=2021-07-28&rft.volume=17&rft.issue=7&rft.spage=e1009197&rft.epage=e1009197&rft.pages=e1009197-e1009197&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009197&rft_dat=%3Cgale_plos_%3EA670982713%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561943874&rft_id=info:pmid/34319988&rft_galeid=A670982713&rft_doaj_id=oai_doaj_org_article_e07ec24e3ad3499d97f5ebf49fc564d4&rfr_iscdi=true |