Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success
Sperm migration in the female genital tract controls sperm selection and, therefore, reproductive success as male gametes are conditioned for fertilization while their number is dramatically reduced. Mechanisms underlying sperm migration are mostly unknown, since in vivo investigations are mostly un...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-07, Vol.17 (7), p.e1009109-e1009109 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009109 |
---|---|
container_issue | 7 |
container_start_page | e1009109 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Diemer, Jorin Hahn, Jens Goldenbogen, Björn Müller, Karin Klipp, Edda |
description | Sperm migration in the female genital tract controls sperm selection and, therefore, reproductive success as male gametes are conditioned for fertilization while their number is dramatically reduced. Mechanisms underlying sperm migration are mostly unknown, since in vivo investigations are mostly unfeasible for ethical or practical reasons. By presenting a spatio-temporal model of the mammalian female genital tract combined with agent-based description of sperm motion and interaction as well as parameterizing it with bovine data, we offer an alternative possibility for studying sperm migration in silico. The model incorporates genital tract geometry as well as biophysical principles of sperm motion observed in vitro such as positive rheotaxis and thigmotaxis. This model for sperm migration from vagina to oviducts was successfully tested against in vivo data from literature. We found that physical sperm characteristics such as velocity and directional stability as well as sperm-fluid interactions and wall alignment are critical for success, i.e. sperms reaching the oviducts. Therefore, we propose that these identified sperm parameters should be considered in detail for conditioning sperm in artificial selection procedures since the natural processes are normally bypassed in reproductive in vitro technologies. The tremendous impact of mucus flow to support sperm accumulation in the oviduct highlights the importance of a species-specific optimum time window for artificial insemination regarding ovulation. Predictions from our extendable in silico experimental system will improve assisted reproduction in humans, endangered species, and livestock. |
doi_str_mv | 10.1371/journal.pcbi.1009109 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561943762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670982514</galeid><doaj_id>oai_doaj_org_article_dd7bc172997747fa906c8bbc7219e89b</doaj_id><sourcerecordid>A670982514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-c2a292a3e383e8f19168523d902acf543ca64033ba8e16aa3abd49b9ea05e8023</originalsourceid><addsrcrecordid>eNqVks1u1DAQxyMEoqXwBkhY4lIOu_gjieMLUlXxsVIFEoWzNXEmqZckXmyn6t54CJ6QJ8GhAbGoF-TDWOPf_MfzkWVPGV0zIdnLrZv8CP16Z2q7ZpQqRtW97JgVhVhJUVT3_7ofZY9C2FKarqp8mB2JnJe54vI4217u0A9ksJ2HaN1I7EjiFZIORxuhJ9GDiT--fd-MJNjeGkfwJkXYAccYiG2Sse2efME9aRPpfCCt88TjzrtmMtFeIwmTMRjC4-xBC33AJ4s9yT6_ef3p_N3q4sPbzfnZxcqUooorw4ErDgJFJbBqmWJlVXDRKMrBtEUuDJQ5FaKGClkJIKBuclUrBFpgRbk4yZ7d6u56F_TSpqB5UTKVC1nOxOaWaBxs9S5VA36vHVj9y-F8p8FHa3rUTSNrwyRXSspctqBoaaq6NpIzhZWqk9arJdtUD9iY1BAP_YHo4ctor3TnrnXFK04lTQKni4B3XycMUQ82GOx7GNFN87-LlF0wKhP6_B_07uoWqoNUgB1bNw9xFtVnpaSq4gXLE7W-g0qnwSGNecTWJv9BwIuDgMREvIkdTCHozeXH_2DfH7L5LWu8C8Fj-6d3jOp5038XqedN18umi5-ruvHB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561943762</pqid></control><display><type>article</type><title>Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success</title><source>Public Library of Science</source><source>EZB Free E-Journals</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Diemer, Jorin ; Hahn, Jens ; Goldenbogen, Björn ; Müller, Karin ; Klipp, Edda</creator><creatorcontrib>Diemer, Jorin ; Hahn, Jens ; Goldenbogen, Björn ; Müller, Karin ; Klipp, Edda</creatorcontrib><description>Sperm migration in the female genital tract controls sperm selection and, therefore, reproductive success as male gametes are conditioned for fertilization while their number is dramatically reduced. Mechanisms underlying sperm migration are mostly unknown, since in vivo investigations are mostly unfeasible for ethical or practical reasons. By presenting a spatio-temporal model of the mammalian female genital tract combined with agent-based description of sperm motion and interaction as well as parameterizing it with bovine data, we offer an alternative possibility for studying sperm migration in silico. The model incorporates genital tract geometry as well as biophysical principles of sperm motion observed in vitro such as positive rheotaxis and thigmotaxis. This model for sperm migration from vagina to oviducts was successfully tested against in vivo data from literature. We found that physical sperm characteristics such as velocity and directional stability as well as sperm-fluid interactions and wall alignment are critical for success, i.e. sperms reaching the oviducts. Therefore, we propose that these identified sperm parameters should be considered in detail for conditioning sperm in artificial selection procedures since the natural processes are normally bypassed in reproductive in vitro technologies. The tremendous impact of mucus flow to support sperm accumulation in the oviduct highlights the importance of a species-specific optimum time window for artificial insemination regarding ovulation. Predictions from our extendable in silico experimental system will improve assisted reproduction in humans, endangered species, and livestock.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009109</identifier><identifier>PMID: 34264927</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Animal reproduction ; Artificial insemination ; Biology and Life Sciences ; Breeding success ; Cell culture ; Cell migration ; Cervix ; Computer and Information Sciences ; Conditioning ; Directional stability ; Endangered & extinct species ; Endangered species ; Ethical standards ; Females ; Fertilization ; Gametes ; Genital tract ; Health aspects ; Hypotheses ; In vitro fertilization ; In vivo methods and tests ; Livestock ; Medicine and Health Sciences ; Mucus ; Normal distribution ; Oviduct ; Ovulation ; Parameter identification ; Physical Sciences ; Physiological aspects ; Propagation ; Reproduction ; Reproduction (biology) ; Reproductive organs ; Research and Analysis Methods ; Rheotaxis ; Sexual reproduction ; Simulation ; Sperm ; Spermatozoa ; Standard deviation ; Success ; Thigmotaxis ; Uterus ; Vagina ; Wildlife conservation ; Windows (intervals)</subject><ispartof>PLoS computational biology, 2021-07, Vol.17 (7), p.e1009109-e1009109</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Diemer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Diemer et al 2021 Diemer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-c2a292a3e383e8f19168523d902acf543ca64033ba8e16aa3abd49b9ea05e8023</citedby><cites>FETCH-LOGICAL-c638t-c2a292a3e383e8f19168523d902acf543ca64033ba8e16aa3abd49b9ea05e8023</cites><orcidid>0000-0003-3273-8002 ; 0000-0002-0567-7075 ; 0000-0003-2200-6553 ; 0000-0002-1456-5278 ; 0000-0003-1749-4863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Diemer, Jorin</creatorcontrib><creatorcontrib>Hahn, Jens</creatorcontrib><creatorcontrib>Goldenbogen, Björn</creatorcontrib><creatorcontrib>Müller, Karin</creatorcontrib><creatorcontrib>Klipp, Edda</creatorcontrib><title>Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success</title><title>PLoS computational biology</title><description>Sperm migration in the female genital tract controls sperm selection and, therefore, reproductive success as male gametes are conditioned for fertilization while their number is dramatically reduced. Mechanisms underlying sperm migration are mostly unknown, since in vivo investigations are mostly unfeasible for ethical or practical reasons. By presenting a spatio-temporal model of the mammalian female genital tract combined with agent-based description of sperm motion and interaction as well as parameterizing it with bovine data, we offer an alternative possibility for studying sperm migration in silico. The model incorporates genital tract geometry as well as biophysical principles of sperm motion observed in vitro such as positive rheotaxis and thigmotaxis. This model for sperm migration from vagina to oviducts was successfully tested against in vivo data from literature. We found that physical sperm characteristics such as velocity and directional stability as well as sperm-fluid interactions and wall alignment are critical for success, i.e. sperms reaching the oviducts. Therefore, we propose that these identified sperm parameters should be considered in detail for conditioning sperm in artificial selection procedures since the natural processes are normally bypassed in reproductive in vitro technologies. The tremendous impact of mucus flow to support sperm accumulation in the oviduct highlights the importance of a species-specific optimum time window for artificial insemination regarding ovulation. Predictions from our extendable in silico experimental system will improve assisted reproduction in humans, endangered species, and livestock.</description><subject>Animal reproduction</subject><subject>Artificial insemination</subject><subject>Biology and Life Sciences</subject><subject>Breeding success</subject><subject>Cell culture</subject><subject>Cell migration</subject><subject>Cervix</subject><subject>Computer and Information Sciences</subject><subject>Conditioning</subject><subject>Directional stability</subject><subject>Endangered & extinct species</subject><subject>Endangered species</subject><subject>Ethical standards</subject><subject>Females</subject><subject>Fertilization</subject><subject>Gametes</subject><subject>Genital tract</subject><subject>Health aspects</subject><subject>Hypotheses</subject><subject>In vitro fertilization</subject><subject>In vivo methods and tests</subject><subject>Livestock</subject><subject>Medicine and Health Sciences</subject><subject>Mucus</subject><subject>Normal distribution</subject><subject>Oviduct</subject><subject>Ovulation</subject><subject>Parameter identification</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Propagation</subject><subject>Reproduction</subject><subject>Reproduction (biology)</subject><subject>Reproductive organs</subject><subject>Research and Analysis Methods</subject><subject>Rheotaxis</subject><subject>Sexual reproduction</subject><subject>Simulation</subject><subject>Sperm</subject><subject>Spermatozoa</subject><subject>Standard deviation</subject><subject>Success</subject><subject>Thigmotaxis</subject><subject>Uterus</subject><subject>Vagina</subject><subject>Wildlife conservation</subject><subject>Windows (intervals)</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVks1u1DAQxyMEoqXwBkhY4lIOu_gjieMLUlXxsVIFEoWzNXEmqZckXmyn6t54CJ6QJ8GhAbGoF-TDWOPf_MfzkWVPGV0zIdnLrZv8CP16Z2q7ZpQqRtW97JgVhVhJUVT3_7ofZY9C2FKarqp8mB2JnJe54vI4217u0A9ksJ2HaN1I7EjiFZIORxuhJ9GDiT--fd-MJNjeGkfwJkXYAccYiG2Sse2efME9aRPpfCCt88TjzrtmMtFeIwmTMRjC4-xBC33AJ4s9yT6_ef3p_N3q4sPbzfnZxcqUooorw4ErDgJFJbBqmWJlVXDRKMrBtEUuDJQ5FaKGClkJIKBuclUrBFpgRbk4yZ7d6u56F_TSpqB5UTKVC1nOxOaWaBxs9S5VA36vHVj9y-F8p8FHa3rUTSNrwyRXSspctqBoaaq6NpIzhZWqk9arJdtUD9iY1BAP_YHo4ctor3TnrnXFK04lTQKni4B3XycMUQ82GOx7GNFN87-LlF0wKhP6_B_07uoWqoNUgB1bNw9xFtVnpaSq4gXLE7W-g0qnwSGNecTWJv9BwIuDgMREvIkdTCHozeXH_2DfH7L5LWu8C8Fj-6d3jOp5038XqedN18umi5-ruvHB</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Diemer, Jorin</creator><creator>Hahn, Jens</creator><creator>Goldenbogen, Björn</creator><creator>Müller, Karin</creator><creator>Klipp, Edda</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3273-8002</orcidid><orcidid>https://orcid.org/0000-0002-0567-7075</orcidid><orcidid>https://orcid.org/0000-0003-2200-6553</orcidid><orcidid>https://orcid.org/0000-0002-1456-5278</orcidid><orcidid>https://orcid.org/0000-0003-1749-4863</orcidid></search><sort><creationdate>20210715</creationdate><title>Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success</title><author>Diemer, Jorin ; Hahn, Jens ; Goldenbogen, Björn ; Müller, Karin ; Klipp, Edda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-c2a292a3e383e8f19168523d902acf543ca64033ba8e16aa3abd49b9ea05e8023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animal reproduction</topic><topic>Artificial insemination</topic><topic>Biology and Life Sciences</topic><topic>Breeding success</topic><topic>Cell culture</topic><topic>Cell migration</topic><topic>Cervix</topic><topic>Computer and Information Sciences</topic><topic>Conditioning</topic><topic>Directional stability</topic><topic>Endangered & extinct species</topic><topic>Endangered species</topic><topic>Ethical standards</topic><topic>Females</topic><topic>Fertilization</topic><topic>Gametes</topic><topic>Genital tract</topic><topic>Health aspects</topic><topic>Hypotheses</topic><topic>In vitro fertilization</topic><topic>In vivo methods and tests</topic><topic>Livestock</topic><topic>Medicine and Health Sciences</topic><topic>Mucus</topic><topic>Normal distribution</topic><topic>Oviduct</topic><topic>Ovulation</topic><topic>Parameter identification</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Propagation</topic><topic>Reproduction</topic><topic>Reproduction (biology)</topic><topic>Reproductive organs</topic><topic>Research and Analysis Methods</topic><topic>Rheotaxis</topic><topic>Sexual reproduction</topic><topic>Simulation</topic><topic>Sperm</topic><topic>Spermatozoa</topic><topic>Standard deviation</topic><topic>Success</topic><topic>Thigmotaxis</topic><topic>Uterus</topic><topic>Vagina</topic><topic>Wildlife conservation</topic><topic>Windows (intervals)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diemer, Jorin</creatorcontrib><creatorcontrib>Hahn, Jens</creatorcontrib><creatorcontrib>Goldenbogen, Björn</creatorcontrib><creatorcontrib>Müller, Karin</creatorcontrib><creatorcontrib>Klipp, Edda</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diemer, Jorin</au><au>Hahn, Jens</au><au>Goldenbogen, Björn</au><au>Müller, Karin</au><au>Klipp, Edda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success</atitle><jtitle>PLoS computational biology</jtitle><date>2021-07-15</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>e1009109</spage><epage>e1009109</epage><pages>e1009109-e1009109</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Sperm migration in the female genital tract controls sperm selection and, therefore, reproductive success as male gametes are conditioned for fertilization while their number is dramatically reduced. Mechanisms underlying sperm migration are mostly unknown, since in vivo investigations are mostly unfeasible for ethical or practical reasons. By presenting a spatio-temporal model of the mammalian female genital tract combined with agent-based description of sperm motion and interaction as well as parameterizing it with bovine data, we offer an alternative possibility for studying sperm migration in silico. The model incorporates genital tract geometry as well as biophysical principles of sperm motion observed in vitro such as positive rheotaxis and thigmotaxis. This model for sperm migration from vagina to oviducts was successfully tested against in vivo data from literature. We found that physical sperm characteristics such as velocity and directional stability as well as sperm-fluid interactions and wall alignment are critical for success, i.e. sperms reaching the oviducts. Therefore, we propose that these identified sperm parameters should be considered in detail for conditioning sperm in artificial selection procedures since the natural processes are normally bypassed in reproductive in vitro technologies. The tremendous impact of mucus flow to support sperm accumulation in the oviduct highlights the importance of a species-specific optimum time window for artificial insemination regarding ovulation. Predictions from our extendable in silico experimental system will improve assisted reproduction in humans, endangered species, and livestock.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34264927</pmid><doi>10.1371/journal.pcbi.1009109</doi><orcidid>https://orcid.org/0000-0003-3273-8002</orcidid><orcidid>https://orcid.org/0000-0002-0567-7075</orcidid><orcidid>https://orcid.org/0000-0003-2200-6553</orcidid><orcidid>https://orcid.org/0000-0002-1456-5278</orcidid><orcidid>https://orcid.org/0000-0003-1749-4863</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-07, Vol.17 (7), p.e1009109-e1009109 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2561943762 |
source | Public Library of Science; EZB Free E-Journals; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | Animal reproduction Artificial insemination Biology and Life Sciences Breeding success Cell culture Cell migration Cervix Computer and Information Sciences Conditioning Directional stability Endangered & extinct species Endangered species Ethical standards Females Fertilization Gametes Genital tract Health aspects Hypotheses In vitro fertilization In vivo methods and tests Livestock Medicine and Health Sciences Mucus Normal distribution Oviduct Ovulation Parameter identification Physical Sciences Physiological aspects Propagation Reproduction Reproduction (biology) Reproductive organs Research and Analysis Methods Rheotaxis Sexual reproduction Simulation Sperm Spermatozoa Standard deviation Success Thigmotaxis Uterus Vagina Wildlife conservation Windows (intervals) |
title | Sperm migration in the genital tract—In silico experiments identify key factors for reproductive success |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sperm%20migration%20in%20the%20genital%20tract%E2%80%94In%20silico%20experiments%20identify%20key%20factors%20for%20reproductive%20success&rft.jtitle=PLoS%20computational%20biology&rft.au=Diemer,%20Jorin&rft.date=2021-07-15&rft.volume=17&rft.issue=7&rft.spage=e1009109&rft.epage=e1009109&rft.pages=e1009109-e1009109&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009109&rft_dat=%3Cgale_plos_%3EA670982514%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561943762&rft_id=info:pmid/34264927&rft_galeid=A670982514&rft_doaj_id=oai_doaj_org_article_dd7bc172997747fa906c8bbc7219e89b&rfr_iscdi=true |