Predicting seasonal influenza using supermarket retail records
Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-07, Vol.17 (7), p.e1009087-e1009087 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009087 |
---|---|
container_issue | 7 |
container_start_page | e1009087 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Miliou, Ioanna Xiong, Xinyue Rinzivillo, Salvatore Zhang, Qian Rossetti, Giulio Giannotti, Fosca Pedreschi, Dino Vespignani, Alessandro |
description | Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics. |
doi_str_mv | 10.1371/journal.pcbi.1009087 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561943719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670983145</galeid><doaj_id>oai_doaj_org_article_8e9b306957374f1390ceb8a02876e4d8</doaj_id><sourcerecordid>A670983145</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-e53b1abcd269f8239ecf7b1936331a773b8817ddc7d9c862561f4235489137603</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRCsxAUOu_j9uFSqKh4rVYB4nC3HngQv2XhrJwj49DjdtOqiXpAPtjy_-Xv-46mqpxitMJX49SaOqbfdaufqsMIIaaTkveoYc06XknJ1_9b5qHqU8wahctTiYXVEGeEESX5cnX5K4IMbQt8uMtgci-Qi9E03Qv_HLsZ8FRh3kLY2_YBhkWCwoSubi8nnx9WDxnYZnsz7SfXt7Zuv5--XFx_frc_PLpZOCDwsgdMa29p5InSjCNXgGlljTQWl2EpJa6Ww9N5Jr50ShAvcMEI5U7p4FYieVM_3ursuZjNbz2YCNSvd0IVY7wkf7cbsUij1_jbRBnN1EVNrbBqC68Ao0DVFQnNJJWsw1chBrSwiSgpgXhWt0_m1sd6Cd9APyXYHooeRPnw3bfxpFNFSM1YEXs4CKV6OkAezDdlB19ke4jjVzTEpP0ZoQV_8g97tbqZaWwyU_4nlXTeJmjMhkVYUM16o1R1UWR62wcUemlDuDxJeHSQUZoBfQ2vHnM36y-f_YD8csmzPuhRzTtDc9A4jM03vtUkzTa-Zp7ekPbvd95uk63GlfwE98ujn</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561943719</pqid></control><display><type>article</type><title>Predicting seasonal influenza using supermarket retail records</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Miliou, Ioanna ; Xiong, Xinyue ; Rinzivillo, Salvatore ; Zhang, Qian ; Rossetti, Giulio ; Giannotti, Fosca ; Pedreschi, Dino ; Vespignani, Alessandro</creator><contributor>Viboud, Cecile</contributor><creatorcontrib>Miliou, Ioanna ; Xiong, Xinyue ; Rinzivillo, Salvatore ; Zhang, Qian ; Rossetti, Giulio ; Giannotti, Fosca ; Pedreschi, Dino ; Vespignani, Alessandro ; Viboud, Cecile</creatorcontrib><description>Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009087</identifier><identifier>PMID: 34252075</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Autoregressive models ; Baskets ; Biology and life sciences ; Computational Biology ; Computer and Information Sciences ; Consumer Behavior - statistics & numerical data ; Data transmission ; Digital data ; Disease control ; Distribution ; Economic forecasting ; Epidemics ; Epidemiology ; Forecasting ; Forecasts and trends ; Health aspects ; Humans ; Incidence ; Influenza ; Influenza, Human - epidemiology ; Italy - epidemiology ; Learning algorithms ; Machine learning ; Medicine and Health Sciences ; People and places ; Physical Sciences ; Real time ; Regression models ; Research and Analysis Methods ; Seasons ; Social networks ; Social Sciences ; Supermarkets ; Support vector machines</subject><ispartof>PLoS computational biology, 2021-07, Vol.17 (7), p.e1009087-e1009087</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Miliou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Miliou et al 2021 Miliou et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-e53b1abcd269f8239ecf7b1936331a773b8817ddc7d9c862561f4235489137603</citedby><cites>FETCH-LOGICAL-c661t-e53b1abcd269f8239ecf7b1936331a773b8817ddc7d9c862561f4235489137603</cites><orcidid>0000-0003-4801-3225 ; 0000-0002-1357-1967 ; 0000-0003-4404-4147 ; 0000-0003-3373-1240 ; 0000-0003-3099-3835 ; 0000-0002-6157-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297944/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297944/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34252075$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Viboud, Cecile</contributor><creatorcontrib>Miliou, Ioanna</creatorcontrib><creatorcontrib>Xiong, Xinyue</creatorcontrib><creatorcontrib>Rinzivillo, Salvatore</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Rossetti, Giulio</creatorcontrib><creatorcontrib>Giannotti, Fosca</creatorcontrib><creatorcontrib>Pedreschi, Dino</creatorcontrib><creatorcontrib>Vespignani, Alessandro</creatorcontrib><title>Predicting seasonal influenza using supermarket retail records</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics.</description><subject>Autoregressive models</subject><subject>Baskets</subject><subject>Biology and life sciences</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Consumer Behavior - statistics & numerical data</subject><subject>Data transmission</subject><subject>Digital data</subject><subject>Disease control</subject><subject>Distribution</subject><subject>Economic forecasting</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Forecasting</subject><subject>Forecasts and trends</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Incidence</subject><subject>Influenza</subject><subject>Influenza, Human - epidemiology</subject><subject>Italy - epidemiology</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Medicine and Health Sciences</subject><subject>People and places</subject><subject>Physical Sciences</subject><subject>Real time</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Seasons</subject><subject>Social networks</subject><subject>Social Sciences</subject><subject>Supermarkets</subject><subject>Support vector machines</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRCsxAUOu_j9uFSqKh4rVYB4nC3HngQv2XhrJwj49DjdtOqiXpAPtjy_-Xv-46mqpxitMJX49SaOqbfdaufqsMIIaaTkveoYc06XknJ1_9b5qHqU8wahctTiYXVEGeEESX5cnX5K4IMbQt8uMtgci-Qi9E03Qv_HLsZ8FRh3kLY2_YBhkWCwoSubi8nnx9WDxnYZnsz7SfXt7Zuv5--XFx_frc_PLpZOCDwsgdMa29p5InSjCNXgGlljTQWl2EpJa6Ww9N5Jr50ShAvcMEI5U7p4FYieVM_3ursuZjNbz2YCNSvd0IVY7wkf7cbsUij1_jbRBnN1EVNrbBqC68Ao0DVFQnNJJWsw1chBrSwiSgpgXhWt0_m1sd6Cd9APyXYHooeRPnw3bfxpFNFSM1YEXs4CKV6OkAezDdlB19ke4jjVzTEpP0ZoQV_8g97tbqZaWwyU_4nlXTeJmjMhkVYUM16o1R1UWR62wcUemlDuDxJeHSQUZoBfQ2vHnM36y-f_YD8csmzPuhRzTtDc9A4jM03vtUkzTa-Zp7ekPbvd95uk63GlfwE98ujn</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Miliou, Ioanna</creator><creator>Xiong, Xinyue</creator><creator>Rinzivillo, Salvatore</creator><creator>Zhang, Qian</creator><creator>Rossetti, Giulio</creator><creator>Giannotti, Fosca</creator><creator>Pedreschi, Dino</creator><creator>Vespignani, Alessandro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4801-3225</orcidid><orcidid>https://orcid.org/0000-0002-1357-1967</orcidid><orcidid>https://orcid.org/0000-0003-4404-4147</orcidid><orcidid>https://orcid.org/0000-0003-3373-1240</orcidid><orcidid>https://orcid.org/0000-0003-3099-3835</orcidid><orcidid>https://orcid.org/0000-0002-6157-9912</orcidid></search><sort><creationdate>20210701</creationdate><title>Predicting seasonal influenza using supermarket retail records</title><author>Miliou, Ioanna ; Xiong, Xinyue ; Rinzivillo, Salvatore ; Zhang, Qian ; Rossetti, Giulio ; Giannotti, Fosca ; Pedreschi, Dino ; Vespignani, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-e53b1abcd269f8239ecf7b1936331a773b8817ddc7d9c862561f4235489137603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Autoregressive models</topic><topic>Baskets</topic><topic>Biology and life sciences</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Consumer Behavior - statistics & numerical data</topic><topic>Data transmission</topic><topic>Digital data</topic><topic>Disease control</topic><topic>Distribution</topic><topic>Economic forecasting</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Forecasting</topic><topic>Forecasts and trends</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Incidence</topic><topic>Influenza</topic><topic>Influenza, Human - epidemiology</topic><topic>Italy - epidemiology</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Medicine and Health Sciences</topic><topic>People and places</topic><topic>Physical Sciences</topic><topic>Real time</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Seasons</topic><topic>Social networks</topic><topic>Social Sciences</topic><topic>Supermarkets</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miliou, Ioanna</creatorcontrib><creatorcontrib>Xiong, Xinyue</creatorcontrib><creatorcontrib>Rinzivillo, Salvatore</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Rossetti, Giulio</creatorcontrib><creatorcontrib>Giannotti, Fosca</creatorcontrib><creatorcontrib>Pedreschi, Dino</creatorcontrib><creatorcontrib>Vespignani, Alessandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Entrepreneurship Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miliou, Ioanna</au><au>Xiong, Xinyue</au><au>Rinzivillo, Salvatore</au><au>Zhang, Qian</au><au>Rossetti, Giulio</au><au>Giannotti, Fosca</au><au>Pedreschi, Dino</au><au>Vespignani, Alessandro</au><au>Viboud, Cecile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting seasonal influenza using supermarket retail records</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-07-01</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>e1009087</spage><epage>e1009087</epage><pages>e1009087-e1009087</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Increased availability of epidemiological data, novel digital data streams, and the rise of powerful machine learning approaches have generated a surge of research activity on real-time epidemic forecast systems. In this paper, we propose the use of a novel data source, namely retail market data to improve seasonal influenza forecasting. Specifically, we consider supermarket retail data as a proxy signal for influenza, through the identification of sentinel baskets, i.e., products bought together by a population of selected customers. We develop a nowcasting and forecasting framework that provides estimates for influenza incidence in Italy up to 4 weeks ahead. We make use of the Support Vector Regression (SVR) model to produce the predictions of seasonal flu incidence. Our predictions outperform both a baseline autoregressive model and a second baseline based on product purchases. The results show quantitatively the value of incorporating retail market data in forecasting models, acting as a proxy that can be used for the real-time analysis of epidemics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34252075</pmid><doi>10.1371/journal.pcbi.1009087</doi><orcidid>https://orcid.org/0000-0003-4801-3225</orcidid><orcidid>https://orcid.org/0000-0002-1357-1967</orcidid><orcidid>https://orcid.org/0000-0003-4404-4147</orcidid><orcidid>https://orcid.org/0000-0003-3373-1240</orcidid><orcidid>https://orcid.org/0000-0003-3099-3835</orcidid><orcidid>https://orcid.org/0000-0002-6157-9912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-07, Vol.17 (7), p.e1009087-e1009087 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2561943719 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Autoregressive models Baskets Biology and life sciences Computational Biology Computer and Information Sciences Consumer Behavior - statistics & numerical data Data transmission Digital data Disease control Distribution Economic forecasting Epidemics Epidemiology Forecasting Forecasts and trends Health aspects Humans Incidence Influenza Influenza, Human - epidemiology Italy - epidemiology Learning algorithms Machine learning Medicine and Health Sciences People and places Physical Sciences Real time Regression models Research and Analysis Methods Seasons Social networks Social Sciences Supermarkets Support vector machines |
title | Predicting seasonal influenza using supermarket retail records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20seasonal%20influenza%20using%20supermarket%20retail%20records&rft.jtitle=PLoS%20computational%20biology&rft.au=Miliou,%20Ioanna&rft.date=2021-07-01&rft.volume=17&rft.issue=7&rft.spage=e1009087&rft.epage=e1009087&rft.pages=e1009087-e1009087&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009087&rft_dat=%3Cgale_plos_%3EA670983145%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561943719&rft_id=info:pmid/34252075&rft_galeid=A670983145&rft_doaj_id=oai_doaj_org_article_8e9b306957374f1390ceb8a02876e4d8&rfr_iscdi=true |