Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints
Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-07, Vol.17 (7), p.e1009744-e1009744 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009744 |
---|---|
container_issue | 7 |
container_start_page | e1009744 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Tohma, Kentaro Lepore, Cara J Martinez, Magaly Degiuseppe, Juan I Khamrin, Pattara Saito, Mayuko Mayta, Holger Nwaba, Amy U. Amanda Ford-Siltz, Lauren A Green, Kim Y Galeano, Maria E Zimic, Mirko Stupka, Juan A Gilman, Robert H Maneekarn, Niwat Ushijima, Hiroshi Parra, Gabriel I |
description | Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission. |
doi_str_mv | 10.1371/journal.ppat.1009744 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561941061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670983589</galeid><doaj_id>oai_doaj_org_article_42bab9b49ec74907a6dbb894077edc94</doaj_id><sourcerecordid>A670983589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-bf82b5cccc81f886fc447ce433743d5cb25d2616e9857136199b9d8429f0737d3</originalsourceid><addsrcrecordid>eNqVk81u1DAQgCMEoqXwBkhE4gKHXezYju0LUlVBWakCiZ-z5ThO1lViBztZuo_EWzLZDYhFvZAcYs1889kzirPsOUZrTDh-cxum6HW3HgY9rjFCklP6IDvHjJEVJ5w-_Gt9lj1J6RYhigkuH2dnhBaMCcTPs5_X1ofern642uYafPtkUx6afDv12uc-xLBzcZqDw7wEyvnk2u0IlM_tLnTT6ILXcZ_Xe697ZxJ4asgA642dXSbYO5dG59scZLrLhzBMnZ7r0kGxm1OTr23MozWhr5w_ZKHSpzFq58f0NHvU6C7ZZ8v3Ivv2_t3Xqw-rm0_Xm6vLm5UpiRhXVSOKihl4BG6EKBtDKTeWEhgDqZmpClYXJS6tFIxjUmIpK1kLWsgGwahqcpG9OHqHLiS1TDmpggFKMSoxEJsjUQd9q4boeuheBe3UIRBiq3QcnemsokWlK1lRaQ2nEnFd1lUlJEWc29pICq63y25T1UPIemi3O5GeZrzbqjbslCBYFEKA4NUiiOH7ZNOoepeM7TrtbZjmczPMOEeCAfryH_T-7haq1dCA802Afc0sVZclR1IQJiRQ63soeGsLv0DwtnEQPyl4fVIAzGjvxlZPKanNl8__wX48ZemRNTGkFG3zZ3YYqfmi_G5SzRdFLReF_ALsGwpQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561941061</pqid></control><display><type>article</type><title>Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tohma, Kentaro ; Lepore, Cara J ; Martinez, Magaly ; Degiuseppe, Juan I ; Khamrin, Pattara ; Saito, Mayuko ; Mayta, Holger ; Nwaba, Amy U. Amanda ; Ford-Siltz, Lauren A ; Green, Kim Y ; Galeano, Maria E ; Zimic, Mirko ; Stupka, Juan A ; Gilman, Robert H ; Maneekarn, Niwat ; Ushijima, Hiroshi ; Parra, Gabriel I</creator><contributor>Belshaw, Robert</contributor><creatorcontrib>Tohma, Kentaro ; Lepore, Cara J ; Martinez, Magaly ; Degiuseppe, Juan I ; Khamrin, Pattara ; Saito, Mayuko ; Mayta, Holger ; Nwaba, Amy U. Amanda ; Ford-Siltz, Lauren A ; Green, Kim Y ; Galeano, Maria E ; Zimic, Mirko ; Stupka, Juan A ; Gilman, Robert H ; Maneekarn, Niwat ; Ushijima, Hiroshi ; Parra, Gabriel I ; Belshaw, Robert</creatorcontrib><description>Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009744</identifier><identifier>PMID: 34255807</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Binding sites ; Biology and life sciences ; Computer and Information Sciences ; Continents ; Datasets ; Diversification ; Epidemics ; Gastroenteritis ; Gene sequencing ; Genetic analysis ; Genetic aspects ; Genetic diversity ; Genomes ; Genomics ; Genotypes ; Geography ; Medicine and Health Sciences ; Mutation ; Norovirus ; Nosocomial infections ; Phylogenetics ; Phylogeny ; Populations ; Proteins ; Recombination ; RNA polymerase ; Structural proteins ; Vaccines ; Viruses ; VP1 protein</subject><ispartof>PLoS pathogens, 2021-07, Vol.17 (7), p.e1009744-e1009744</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-bf82b5cccc81f886fc447ce433743d5cb25d2616e9857136199b9d8429f0737d3</citedby><cites>FETCH-LOGICAL-c638t-bf82b5cccc81f886fc447ce433743d5cb25d2616e9857136199b9d8429f0737d3</cites><orcidid>0000-0002-1102-4740 ; 0000-0001-9349-3155 ; 0000-0002-8102-4236 ; 0000-0002-2220-6435 ; 0000-0002-9037-0712 ; 0000-0002-7203-8847 ; 0000-0003-4378-3861 ; 0000-0002-8189-7352 ; 0000-0002-8539-5763 ; 0000-0002-2181-7795 ; 0000-0001-5306-628X ; 0000-0002-0456-9355 ; 0000-0002-6841-4678</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318288/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8318288/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids></links><search><contributor>Belshaw, Robert</contributor><creatorcontrib>Tohma, Kentaro</creatorcontrib><creatorcontrib>Lepore, Cara J</creatorcontrib><creatorcontrib>Martinez, Magaly</creatorcontrib><creatorcontrib>Degiuseppe, Juan I</creatorcontrib><creatorcontrib>Khamrin, Pattara</creatorcontrib><creatorcontrib>Saito, Mayuko</creatorcontrib><creatorcontrib>Mayta, Holger</creatorcontrib><creatorcontrib>Nwaba, Amy U. Amanda</creatorcontrib><creatorcontrib>Ford-Siltz, Lauren A</creatorcontrib><creatorcontrib>Green, Kim Y</creatorcontrib><creatorcontrib>Galeano, Maria E</creatorcontrib><creatorcontrib>Zimic, Mirko</creatorcontrib><creatorcontrib>Stupka, Juan A</creatorcontrib><creatorcontrib>Gilman, Robert H</creatorcontrib><creatorcontrib>Maneekarn, Niwat</creatorcontrib><creatorcontrib>Ushijima, Hiroshi</creatorcontrib><creatorcontrib>Parra, Gabriel I</creatorcontrib><title>Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints</title><title>PLoS pathogens</title><description>Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission.</description><subject>Analysis</subject><subject>Binding sites</subject><subject>Biology and life sciences</subject><subject>Computer and Information Sciences</subject><subject>Continents</subject><subject>Datasets</subject><subject>Diversification</subject><subject>Epidemics</subject><subject>Gastroenteritis</subject><subject>Gene sequencing</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotypes</subject><subject>Geography</subject><subject>Medicine and Health Sciences</subject><subject>Mutation</subject><subject>Norovirus</subject><subject>Nosocomial infections</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Populations</subject><subject>Proteins</subject><subject>Recombination</subject><subject>RNA polymerase</subject><subject>Structural proteins</subject><subject>Vaccines</subject><subject>Viruses</subject><subject>VP1 protein</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk81u1DAQgCMEoqXwBkhE4gKHXezYju0LUlVBWakCiZ-z5ThO1lViBztZuo_EWzLZDYhFvZAcYs1889kzirPsOUZrTDh-cxum6HW3HgY9rjFCklP6IDvHjJEVJ5w-_Gt9lj1J6RYhigkuH2dnhBaMCcTPs5_X1ofern642uYafPtkUx6afDv12uc-xLBzcZqDw7wEyvnk2u0IlM_tLnTT6ILXcZ_Xe697ZxJ4asgA642dXSbYO5dG59scZLrLhzBMnZ7r0kGxm1OTr23MozWhr5w_ZKHSpzFq58f0NHvU6C7ZZ8v3Ivv2_t3Xqw-rm0_Xm6vLm5UpiRhXVSOKihl4BG6EKBtDKTeWEhgDqZmpClYXJS6tFIxjUmIpK1kLWsgGwahqcpG9OHqHLiS1TDmpggFKMSoxEJsjUQd9q4boeuheBe3UIRBiq3QcnemsokWlK1lRaQ2nEnFd1lUlJEWc29pICq63y25T1UPIemi3O5GeZrzbqjbslCBYFEKA4NUiiOH7ZNOoepeM7TrtbZjmczPMOEeCAfryH_T-7haq1dCA802Afc0sVZclR1IQJiRQ63soeGsLv0DwtnEQPyl4fVIAzGjvxlZPKanNl8__wX48ZemRNTGkFG3zZ3YYqfmi_G5SzRdFLReF_ALsGwpQ</recordid><startdate>20210713</startdate><enddate>20210713</enddate><creator>Tohma, Kentaro</creator><creator>Lepore, Cara J</creator><creator>Martinez, Magaly</creator><creator>Degiuseppe, Juan I</creator><creator>Khamrin, Pattara</creator><creator>Saito, Mayuko</creator><creator>Mayta, Holger</creator><creator>Nwaba, Amy U. Amanda</creator><creator>Ford-Siltz, Lauren A</creator><creator>Green, Kim Y</creator><creator>Galeano, Maria E</creator><creator>Zimic, Mirko</creator><creator>Stupka, Juan A</creator><creator>Gilman, Robert H</creator><creator>Maneekarn, Niwat</creator><creator>Ushijima, Hiroshi</creator><creator>Parra, Gabriel I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1102-4740</orcidid><orcidid>https://orcid.org/0000-0001-9349-3155</orcidid><orcidid>https://orcid.org/0000-0002-8102-4236</orcidid><orcidid>https://orcid.org/0000-0002-2220-6435</orcidid><orcidid>https://orcid.org/0000-0002-9037-0712</orcidid><orcidid>https://orcid.org/0000-0002-7203-8847</orcidid><orcidid>https://orcid.org/0000-0003-4378-3861</orcidid><orcidid>https://orcid.org/0000-0002-8189-7352</orcidid><orcidid>https://orcid.org/0000-0002-8539-5763</orcidid><orcidid>https://orcid.org/0000-0002-2181-7795</orcidid><orcidid>https://orcid.org/0000-0001-5306-628X</orcidid><orcidid>https://orcid.org/0000-0002-0456-9355</orcidid><orcidid>https://orcid.org/0000-0002-6841-4678</orcidid></search><sort><creationdate>20210713</creationdate><title>Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints</title><author>Tohma, Kentaro ; Lepore, Cara J ; Martinez, Magaly ; Degiuseppe, Juan I ; Khamrin, Pattara ; Saito, Mayuko ; Mayta, Holger ; Nwaba, Amy U. Amanda ; Ford-Siltz, Lauren A ; Green, Kim Y ; Galeano, Maria E ; Zimic, Mirko ; Stupka, Juan A ; Gilman, Robert H ; Maneekarn, Niwat ; Ushijima, Hiroshi ; Parra, Gabriel I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-bf82b5cccc81f886fc447ce433743d5cb25d2616e9857136199b9d8429f0737d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Binding sites</topic><topic>Biology and life sciences</topic><topic>Computer and Information Sciences</topic><topic>Continents</topic><topic>Datasets</topic><topic>Diversification</topic><topic>Epidemics</topic><topic>Gastroenteritis</topic><topic>Gene sequencing</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotypes</topic><topic>Geography</topic><topic>Medicine and Health Sciences</topic><topic>Mutation</topic><topic>Norovirus</topic><topic>Nosocomial infections</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Populations</topic><topic>Proteins</topic><topic>Recombination</topic><topic>RNA polymerase</topic><topic>Structural proteins</topic><topic>Vaccines</topic><topic>Viruses</topic><topic>VP1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tohma, Kentaro</creatorcontrib><creatorcontrib>Lepore, Cara J</creatorcontrib><creatorcontrib>Martinez, Magaly</creatorcontrib><creatorcontrib>Degiuseppe, Juan I</creatorcontrib><creatorcontrib>Khamrin, Pattara</creatorcontrib><creatorcontrib>Saito, Mayuko</creatorcontrib><creatorcontrib>Mayta, Holger</creatorcontrib><creatorcontrib>Nwaba, Amy U. Amanda</creatorcontrib><creatorcontrib>Ford-Siltz, Lauren A</creatorcontrib><creatorcontrib>Green, Kim Y</creatorcontrib><creatorcontrib>Galeano, Maria E</creatorcontrib><creatorcontrib>Zimic, Mirko</creatorcontrib><creatorcontrib>Stupka, Juan A</creatorcontrib><creatorcontrib>Gilman, Robert H</creatorcontrib><creatorcontrib>Maneekarn, Niwat</creatorcontrib><creatorcontrib>Ushijima, Hiroshi</creatorcontrib><creatorcontrib>Parra, Gabriel I</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tohma, Kentaro</au><au>Lepore, Cara J</au><au>Martinez, Magaly</au><au>Degiuseppe, Juan I</au><au>Khamrin, Pattara</au><au>Saito, Mayuko</au><au>Mayta, Holger</au><au>Nwaba, Amy U. Amanda</au><au>Ford-Siltz, Lauren A</au><au>Green, Kim Y</au><au>Galeano, Maria E</au><au>Zimic, Mirko</au><au>Stupka, Juan A</au><au>Gilman, Robert H</au><au>Maneekarn, Niwat</au><au>Ushijima, Hiroshi</au><au>Parra, Gabriel I</au><au>Belshaw, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints</atitle><jtitle>PLoS pathogens</jtitle><date>2021-07-13</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>e1009744</spage><epage>e1009744</epage><pages>e1009744-e1009744</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Norovirus is a major cause of acute gastroenteritis worldwide. Over 30 different genotypes, mostly from genogroup I (GI) and II (GII), have been shown to infect humans. Despite three decades of genome sequencing, our understanding of the role of genomic diversification across continents and time is incomplete. To close the spatiotemporal gap of genomic information of human noroviruses, we conducted a large-scale genome-wide analyses that included the nearly full-length sequencing of 281 archival viruses circulating since the 1970s in over 10 countries from four continents, with a major emphasis on norovirus genotypes that are currently underrepresented in public genome databases. We provided new genome information for 24 distinct genotypes, including the oldest genome information from 12 norovirus genotypes. Analyses of this new genomic information, together with those publicly available, showed that (i) noroviruses evolve at similar rates across genomic regions and genotypes; (ii) emerging viruses evolved from transiently-circulating intermediate viruses; (iii) diversifying selection on the VP1 protein was recorded in genotypes with multiple variants; (iv) non-structural proteins showed a similar branching on their phylogenetic trees; and (v) contrary to the current understanding, there are restrictions on the ability to recombine different genomic regions, which results in co-circulating populations of viruses evolving independently in human communities. This study provides a comprehensive genetic analysis of diverse norovirus genotypes and the role of non-structural proteins on viral diversification, shedding new light on the mechanisms of norovirus evolution and transmission.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34255807</pmid><doi>10.1371/journal.ppat.1009744</doi><orcidid>https://orcid.org/0000-0002-1102-4740</orcidid><orcidid>https://orcid.org/0000-0001-9349-3155</orcidid><orcidid>https://orcid.org/0000-0002-8102-4236</orcidid><orcidid>https://orcid.org/0000-0002-2220-6435</orcidid><orcidid>https://orcid.org/0000-0002-9037-0712</orcidid><orcidid>https://orcid.org/0000-0002-7203-8847</orcidid><orcidid>https://orcid.org/0000-0003-4378-3861</orcidid><orcidid>https://orcid.org/0000-0002-8189-7352</orcidid><orcidid>https://orcid.org/0000-0002-8539-5763</orcidid><orcidid>https://orcid.org/0000-0002-2181-7795</orcidid><orcidid>https://orcid.org/0000-0001-5306-628X</orcidid><orcidid>https://orcid.org/0000-0002-0456-9355</orcidid><orcidid>https://orcid.org/0000-0002-6841-4678</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-07, Vol.17 (7), p.e1009744-e1009744 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2561941061 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Analysis Binding sites Biology and life sciences Computer and Information Sciences Continents Datasets Diversification Epidemics Gastroenteritis Gene sequencing Genetic analysis Genetic aspects Genetic diversity Genomes Genomics Genotypes Geography Medicine and Health Sciences Mutation Norovirus Nosocomial infections Phylogenetics Phylogeny Populations Proteins Recombination RNA polymerase Structural proteins Vaccines Viruses VP1 protein |
title | Genome-wide analyses of human noroviruses provide insights on evolutionary dynamics and evidence of coexisting viral populations evolving under recombination constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20analyses%20of%20human%20noroviruses%20provide%20insights%20on%20evolutionary%20dynamics%20and%20evidence%20of%20coexisting%20viral%20populations%20evolving%20under%20recombination%20constraints&rft.jtitle=PLoS%20pathogens&rft.au=Tohma,%20Kentaro&rft.date=2021-07-13&rft.volume=17&rft.issue=7&rft.spage=e1009744&rft.epage=e1009744&rft.pages=e1009744-e1009744&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009744&rft_dat=%3Cgale_plos_%3EA670983589%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561941061&rft_id=info:pmid/34255807&rft_galeid=A670983589&rft_doaj_id=oai_doaj_org_article_42bab9b49ec74907a6dbb894077edc94&rfr_iscdi=true |