Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm
The evolution of insecticide resistance represents a global constraint to agricultural production. Because of the extreme genetic diversity found in insects and the large numbers of genes involved in insecticide detoxification, better tools are needed to quickly identify and validate the involvement...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2021-07, Vol.17 (7), p.e1009680 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e1009680 |
container_title | PLoS genetics |
container_volume | 17 |
creator | Zuo, Yayun Shi, Yu Zhang, Feng Guan, Fang Zhang, Jianpeng Feyereisen, René Fabrick, Jeffrey A Yang, Yihua Wu, Yidong |
description | The evolution of insecticide resistance represents a global constraint to agricultural production. Because of the extreme genetic diversity found in insects and the large numbers of genes involved in insecticide detoxification, better tools are needed to quickly identify and validate the involvement of putative resistance genes for improved monitoring, management, and countering of field-evolved insecticide resistance. The avermectins, emamectin benzoate (EB) and abamectin are relatively new pesticides with reduced environmental risk that target a wide number of insect pests, including the beet armyworm, Spodoptera exigua, an important global pest of many crops. Unfortunately, field resistance to avermectins recently evolved in the beet armyworm, threatening the sustainable use of this class of insecticides. Here, we report a high-quality chromosome-level assembly of the beet armyworm genome and use bulked segregant analysis (BSA) to identify the locus of avermectin resistance, which mapped on 15-16 Mbp of chromosome 17. Knockout of the CYP9A186 gene that maps within this region by CRISPR/Cas9 gene editing fully restored EB susceptibility, implicating this gene in avermectin resistance. Heterologous expression and in vitro functional assays further confirm that a natural substitution (F116V) found in the substrate recognition site 1 (SRS1) of the CYP9A186 protein results in enhanced metabolism of EB and abamectin. Hence, the combined approach of coupling gene editing with BSA allows for the rapid identification of metabolic resistance genes responsible for insecticide resistance, which is critical for effective monitoring and adaptive management of insecticide resistance. |
doi_str_mv | 10.1371/journal.pgen.1009680 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561940492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670982228</galeid><doaj_id>oai_doaj_org_article_dae85ce50667431bb2945fd486292f62</doaj_id><sourcerecordid>A670982228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c736t-ec026fe1f0bfc2aeacb7e935e8fe6f3ac06a243c43b9704cc74d0ee866d9e61e3</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwD5CIhITgsIs_Eie-IFUrKCtVtNoCV8txxruukji1nS399zhsQA3qAeSD7fEz73jGniR5idES0wK_v7aD62Sz7LfQLTFCnJXoUXKM85wuigxlj--tj5Jn3l8jRPOSF0-TI5qRnKCSHCf7M-hsC2kr-95021TZoW-gTm9N2KWrzfrqcpPGAJBCbcIIONiDbHwq08ssR4czZTsNLtr24FpQkYuYNz7ITkEad2EHaQUQUunau1vr2ufJEx1V4MU0nyTfPn38uvq8OL84W69OzxeqoCwsQCHCNGCNKq2IBKmqAjjNodTANJUKMUkyqjJa8QJlShVZjQBKxmoODAM9SV4ddPvGejGVzAuSM8xjXTiJxPpA1FZei96ZVro7YaURvwzWbYV0wagGRC2hzBXkiLEio7iqCM9yXWclI5xoNmp9mKINVQu1gi442cxE5yed2Ymt3YuS8ILTUeDtJODszQA-iNZ4BU0jO7BDvDdjGOESFziir_9CH85uorYyJmA6bWNcNYqKU1YgXhJCykgtH6DiqKE18XFBm2ifObybOUQmwI-wlYP3Yn21-Q_2y7-zF9_n7Jt77C5-yrDzthmCsZ2fg9kBVM5670D_eRCMxNhKvysnxlYSUyvRn4pYDtQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561940492</pqid></control><display><type>article</type><title>Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Zuo, Yayun ; Shi, Yu ; Zhang, Feng ; Guan, Fang ; Zhang, Jianpeng ; Feyereisen, René ; Fabrick, Jeffrey A ; Yang, Yihua ; Wu, Yidong</creator><creatorcontrib>Zuo, Yayun ; Shi, Yu ; Zhang, Feng ; Guan, Fang ; Zhang, Jianpeng ; Feyereisen, René ; Fabrick, Jeffrey A ; Yang, Yihua ; Wu, Yidong</creatorcontrib><description>The evolution of insecticide resistance represents a global constraint to agricultural production. Because of the extreme genetic diversity found in insects and the large numbers of genes involved in insecticide detoxification, better tools are needed to quickly identify and validate the involvement of putative resistance genes for improved monitoring, management, and countering of field-evolved insecticide resistance. The avermectins, emamectin benzoate (EB) and abamectin are relatively new pesticides with reduced environmental risk that target a wide number of insect pests, including the beet armyworm, Spodoptera exigua, an important global pest of many crops. Unfortunately, field resistance to avermectins recently evolved in the beet armyworm, threatening the sustainable use of this class of insecticides. Here, we report a high-quality chromosome-level assembly of the beet armyworm genome and use bulked segregant analysis (BSA) to identify the locus of avermectin resistance, which mapped on 15-16 Mbp of chromosome 17. Knockout of the CYP9A186 gene that maps within this region by CRISPR/Cas9 gene editing fully restored EB susceptibility, implicating this gene in avermectin resistance. Heterologous expression and in vitro functional assays further confirm that a natural substitution (F116V) found in the substrate recognition site 1 (SRS1) of the CYP9A186 protein results in enhanced metabolism of EB and abamectin. Hence, the combined approach of coupling gene editing with BSA allows for the rapid identification of metabolic resistance genes responsible for insecticide resistance, which is critical for effective monitoring and adaptive management of insecticide resistance.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009680</identifier><identifier>PMID: 34252082</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Abamectin ; adaptive management ; Agricultural pests ; Army-worms ; Arthropods ; Avermectin ; Benzoic acid ; Binding sites ; Biology and Life Sciences ; Chromosome 17 ; Control ; CRISPR ; CRISPR-Cas systems ; Detoxification ; Evolution ; Females ; Gene mapping ; Genes ; Genetic aspects ; Genetic diversity ; genetic variation ; Genome editing ; Genomes ; Genomics ; heterologous gene expression ; insecticide resistance ; Insecticides ; loci ; Metabolism ; Methods ; Pesticide resistance ; Pests ; Physical Sciences ; Physiological aspects ; Protein turnover ; Proteins ; Research and Analysis Methods ; risk ; Sex chromosomes ; Spodoptera exigua</subject><ispartof>PLoS genetics, 2021-07, Vol.17 (7), p.e1009680</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c736t-ec026fe1f0bfc2aeacb7e935e8fe6f3ac06a243c43b9704cc74d0ee866d9e61e3</citedby><cites>FETCH-LOGICAL-c736t-ec026fe1f0bfc2aeacb7e935e8fe6f3ac06a243c43b9704cc74d0ee866d9e61e3</cites><orcidid>0000-0003-3456-3373 ; 0000-0001-9198-4057 ; 0000-0002-1371-266X ; 0000-0002-9560-571X ; 0000-0003-0758-1672 ; 0000-0002-1904-5124 ; 0000-0002-3893-9545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297932/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8297932/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Zuo, Yayun</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Guan, Fang</creatorcontrib><creatorcontrib>Zhang, Jianpeng</creatorcontrib><creatorcontrib>Feyereisen, René</creatorcontrib><creatorcontrib>Fabrick, Jeffrey A</creatorcontrib><creatorcontrib>Yang, Yihua</creatorcontrib><creatorcontrib>Wu, Yidong</creatorcontrib><title>Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm</title><title>PLoS genetics</title><description>The evolution of insecticide resistance represents a global constraint to agricultural production. Because of the extreme genetic diversity found in insects and the large numbers of genes involved in insecticide detoxification, better tools are needed to quickly identify and validate the involvement of putative resistance genes for improved monitoring, management, and countering of field-evolved insecticide resistance. The avermectins, emamectin benzoate (EB) and abamectin are relatively new pesticides with reduced environmental risk that target a wide number of insect pests, including the beet armyworm, Spodoptera exigua, an important global pest of many crops. Unfortunately, field resistance to avermectins recently evolved in the beet armyworm, threatening the sustainable use of this class of insecticides. Here, we report a high-quality chromosome-level assembly of the beet armyworm genome and use bulked segregant analysis (BSA) to identify the locus of avermectin resistance, which mapped on 15-16 Mbp of chromosome 17. Knockout of the CYP9A186 gene that maps within this region by CRISPR/Cas9 gene editing fully restored EB susceptibility, implicating this gene in avermectin resistance. Heterologous expression and in vitro functional assays further confirm that a natural substitution (F116V) found in the substrate recognition site 1 (SRS1) of the CYP9A186 protein results in enhanced metabolism of EB and abamectin. Hence, the combined approach of coupling gene editing with BSA allows for the rapid identification of metabolic resistance genes responsible for insecticide resistance, which is critical for effective monitoring and adaptive management of insecticide resistance.</description><subject>Abamectin</subject><subject>adaptive management</subject><subject>Agricultural pests</subject><subject>Army-worms</subject><subject>Arthropods</subject><subject>Avermectin</subject><subject>Benzoic acid</subject><subject>Binding sites</subject><subject>Biology and Life Sciences</subject><subject>Chromosome 17</subject><subject>Control</subject><subject>CRISPR</subject><subject>CRISPR-Cas systems</subject><subject>Detoxification</subject><subject>Evolution</subject><subject>Females</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>genetic variation</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>heterologous gene expression</subject><subject>insecticide resistance</subject><subject>Insecticides</subject><subject>loci</subject><subject>Metabolism</subject><subject>Methods</subject><subject>Pesticide resistance</subject><subject>Pests</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Protein turnover</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>risk</subject><subject>Sex chromosomes</subject><subject>Spodoptera exigua</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwD5CIhITgsIs_Eie-IFUrKCtVtNoCV8txxruukji1nS399zhsQA3qAeSD7fEz73jGniR5idES0wK_v7aD62Sz7LfQLTFCnJXoUXKM85wuigxlj--tj5Jn3l8jRPOSF0-TI5qRnKCSHCf7M-hsC2kr-95021TZoW-gTm9N2KWrzfrqcpPGAJBCbcIIONiDbHwq08ssR4czZTsNLtr24FpQkYuYNz7ITkEad2EHaQUQUunau1vr2ufJEx1V4MU0nyTfPn38uvq8OL84W69OzxeqoCwsQCHCNGCNKq2IBKmqAjjNodTANJUKMUkyqjJa8QJlShVZjQBKxmoODAM9SV4ddPvGejGVzAuSM8xjXTiJxPpA1FZei96ZVro7YaURvwzWbYV0wagGRC2hzBXkiLEio7iqCM9yXWclI5xoNmp9mKINVQu1gi442cxE5yed2Ymt3YuS8ILTUeDtJODszQA-iNZ4BU0jO7BDvDdjGOESFziir_9CH85uorYyJmA6bWNcNYqKU1YgXhJCykgtH6DiqKE18XFBm2ifObybOUQmwI-wlYP3Yn21-Q_2y7-zF9_n7Jt77C5-yrDzthmCsZ2fg9kBVM5670D_eRCMxNhKvysnxlYSUyvRn4pYDtQ</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Zuo, Yayun</creator><creator>Shi, Yu</creator><creator>Zhang, Feng</creator><creator>Guan, Fang</creator><creator>Zhang, Jianpeng</creator><creator>Feyereisen, René</creator><creator>Fabrick, Jeffrey A</creator><creator>Yang, Yihua</creator><creator>Wu, Yidong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3456-3373</orcidid><orcidid>https://orcid.org/0000-0001-9198-4057</orcidid><orcidid>https://orcid.org/0000-0002-1371-266X</orcidid><orcidid>https://orcid.org/0000-0002-9560-571X</orcidid><orcidid>https://orcid.org/0000-0003-0758-1672</orcidid><orcidid>https://orcid.org/0000-0002-1904-5124</orcidid><orcidid>https://orcid.org/0000-0002-3893-9545</orcidid></search><sort><creationdate>20210712</creationdate><title>Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm</title><author>Zuo, Yayun ; Shi, Yu ; Zhang, Feng ; Guan, Fang ; Zhang, Jianpeng ; Feyereisen, René ; Fabrick, Jeffrey A ; Yang, Yihua ; Wu, Yidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c736t-ec026fe1f0bfc2aeacb7e935e8fe6f3ac06a243c43b9704cc74d0ee866d9e61e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abamectin</topic><topic>adaptive management</topic><topic>Agricultural pests</topic><topic>Army-worms</topic><topic>Arthropods</topic><topic>Avermectin</topic><topic>Benzoic acid</topic><topic>Binding sites</topic><topic>Biology and Life Sciences</topic><topic>Chromosome 17</topic><topic>Control</topic><topic>CRISPR</topic><topic>CRISPR-Cas systems</topic><topic>Detoxification</topic><topic>Evolution</topic><topic>Females</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>genetic variation</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>heterologous gene expression</topic><topic>insecticide resistance</topic><topic>Insecticides</topic><topic>loci</topic><topic>Metabolism</topic><topic>Methods</topic><topic>Pesticide resistance</topic><topic>Pests</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Protein turnover</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>risk</topic><topic>Sex chromosomes</topic><topic>Spodoptera exigua</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuo, Yayun</creatorcontrib><creatorcontrib>Shi, Yu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><creatorcontrib>Guan, Fang</creatorcontrib><creatorcontrib>Zhang, Jianpeng</creatorcontrib><creatorcontrib>Feyereisen, René</creatorcontrib><creatorcontrib>Fabrick, Jeffrey A</creatorcontrib><creatorcontrib>Yang, Yihua</creatorcontrib><creatorcontrib>Wu, Yidong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuo, Yayun</au><au>Shi, Yu</au><au>Zhang, Feng</au><au>Guan, Fang</au><au>Zhang, Jianpeng</au><au>Feyereisen, René</au><au>Fabrick, Jeffrey A</au><au>Yang, Yihua</au><au>Wu, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm</atitle><jtitle>PLoS genetics</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>17</volume><issue>7</issue><spage>e1009680</spage><pages>e1009680-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The evolution of insecticide resistance represents a global constraint to agricultural production. Because of the extreme genetic diversity found in insects and the large numbers of genes involved in insecticide detoxification, better tools are needed to quickly identify and validate the involvement of putative resistance genes for improved monitoring, management, and countering of field-evolved insecticide resistance. The avermectins, emamectin benzoate (EB) and abamectin are relatively new pesticides with reduced environmental risk that target a wide number of insect pests, including the beet armyworm, Spodoptera exigua, an important global pest of many crops. Unfortunately, field resistance to avermectins recently evolved in the beet armyworm, threatening the sustainable use of this class of insecticides. Here, we report a high-quality chromosome-level assembly of the beet armyworm genome and use bulked segregant analysis (BSA) to identify the locus of avermectin resistance, which mapped on 15-16 Mbp of chromosome 17. Knockout of the CYP9A186 gene that maps within this region by CRISPR/Cas9 gene editing fully restored EB susceptibility, implicating this gene in avermectin resistance. Heterologous expression and in vitro functional assays further confirm that a natural substitution (F116V) found in the substrate recognition site 1 (SRS1) of the CYP9A186 protein results in enhanced metabolism of EB and abamectin. Hence, the combined approach of coupling gene editing with BSA allows for the rapid identification of metabolic resistance genes responsible for insecticide resistance, which is critical for effective monitoring and adaptive management of insecticide resistance.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34252082</pmid><doi>10.1371/journal.pgen.1009680</doi><orcidid>https://orcid.org/0000-0003-3456-3373</orcidid><orcidid>https://orcid.org/0000-0001-9198-4057</orcidid><orcidid>https://orcid.org/0000-0002-1371-266X</orcidid><orcidid>https://orcid.org/0000-0002-9560-571X</orcidid><orcidid>https://orcid.org/0000-0003-0758-1672</orcidid><orcidid>https://orcid.org/0000-0002-1904-5124</orcidid><orcidid>https://orcid.org/0000-0002-3893-9545</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2021-07, Vol.17 (7), p.e1009680 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2561940492 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Abamectin adaptive management Agricultural pests Army-worms Arthropods Avermectin Benzoic acid Binding sites Biology and Life Sciences Chromosome 17 Control CRISPR CRISPR-Cas systems Detoxification Evolution Females Gene mapping Genes Genetic aspects Genetic diversity genetic variation Genome editing Genomes Genomics heterologous gene expression insecticide resistance Insecticides loci Metabolism Methods Pesticide resistance Pests Physical Sciences Physiological aspects Protein turnover Proteins Research and Analysis Methods risk Sex chromosomes Spodoptera exigua |
title | Genome mapping coupled with CRISPR gene editing reveals a P450 gene confers avermectin resistance in the beet armyworm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20mapping%20coupled%20with%20CRISPR%20gene%20editing%20reveals%20a%20P450%20gene%20confers%20avermectin%20resistance%20in%20the%20beet%20armyworm&rft.jtitle=PLoS%20genetics&rft.au=Zuo,%20Yayun&rft.date=2021-07-12&rft.volume=17&rft.issue=7&rft.spage=e1009680&rft.pages=e1009680-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009680&rft_dat=%3Cgale_plos_%3EA670982228%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561940492&rft_id=info:pmid/34252082&rft_galeid=A670982228&rft_doaj_id=oai_doaj_org_article_dae85ce50667431bb2945fd486292f62&rfr_iscdi=true |