Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study
Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from cl...
Gespeichert in:
Veröffentlicht in: | PLoS medicine 2021-07, Vol.18 (7), p.e1003660-e1003660 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003660 |
---|---|
container_issue | 7 |
container_start_page | e1003660 |
container_title | PLoS medicine |
container_volume | 18 |
creator | Iwanami, Shoya Ejima, Keisuke Kim, Kwang Su Noshita, Koji Fujita, Yasuhisa Miyazaki, Taiga Kohno, Shigeru Miyazaki, Yoshitsugu Morimoto, Shimpei Nakaoka, Shinji Koizumi, Yoshiki Asai, Yusuke Aihara, Kazuyuki Watashi, Koichi Thompson, Robin N Shibuya, Kenji Fujiu, Katsuhito Perelson, Alan S Iwami, Shingo Wakita, Takaji |
description | Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model. |
doi_str_mv | 10.1371/journal.pmed.1003660 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561939228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671194083</galeid><doaj_id>oai_doaj_org_article_516b82537a63450ab8a2bac11a255a96</doaj_id><sourcerecordid>A671194083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBkhYICG42MV2juYCqWo5rFRRiUNvrYk9ybry2oudFMoj8NQ47IK6aC9AUWTH_ua3559Mlj1kdM7ymr249GNwYOfrFeo5ozSvKnorO2RlIWasqqvbN-YH2b0YLynlggp6NzvIC86bmvHD7McpDqgG4x3xHYmmd6YzCtxA0muuTABLdBh7gl2XuEgSeHJ-sTidMUG-mmFJAkL0DlqLJMJqPQ3mO0ZiHAngtF-lL02Ud0Pw1qbpEAzY-JIck5XXaI3rSRxGfX0_u9OlDXywHY-yz29efzp5Nzs7f7s4OT6bqaZuhpkGwUvBK94UIqctR1bqtlOqyhFYBQ1iXguV1xShzQXvRImFroXWQvOuy7v8KHu00V1bH-XWxih5WTGRAniTiMWG0B4u5TqYFYRr6cHIXws-9BLCYJRFWbKqbXiZ11DlRUmhbYC3oBgDXpYgqqT1anva2KZKKUw-gN0R3d1xZil7fyWTqhDVdJnHGwEfByOjMqley2SnS-WQrOG8rkWCnm1PCf7LiHGQKxMVWgsO_TglVwhOS0EnvSd_ofst2FI9pCyN63y6nJpE5XFVMyaKJJWo2R6qR4cpE--wM2l5h5_v4dOjcWXU3oDnOwHTb4Tfhh7GGOXi44f_YN__O3t-scs-vcEuEeywjN6OU9PEXbDYgCr4GAN2f6rMqJx69rfTcupZue3Z_CfyADFr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561939228</pqid></control><display><type>article</type><title>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Iwanami, Shoya ; Ejima, Keisuke ; Kim, Kwang Su ; Noshita, Koji ; Fujita, Yasuhisa ; Miyazaki, Taiga ; Kohno, Shigeru ; Miyazaki, Yoshitsugu ; Morimoto, Shimpei ; Nakaoka, Shinji ; Koizumi, Yoshiki ; Asai, Yusuke ; Aihara, Kazuyuki ; Watashi, Koichi ; Thompson, Robin N ; Shibuya, Kenji ; Fujiu, Katsuhito ; Perelson, Alan S ; Iwami, Shingo ; Wakita, Takaji</creator><contributor>Kretzschmar, Mirjam E. E.</contributor><creatorcontrib>Iwanami, Shoya ; Ejima, Keisuke ; Kim, Kwang Su ; Noshita, Koji ; Fujita, Yasuhisa ; Miyazaki, Taiga ; Kohno, Shigeru ; Miyazaki, Yoshitsugu ; Morimoto, Shimpei ; Nakaoka, Shinji ; Koizumi, Yoshiki ; Asai, Yusuke ; Aihara, Kazuyuki ; Watashi, Koichi ; Thompson, Robin N ; Shibuya, Kenji ; Fujiu, Katsuhito ; Perelson, Alan S ; Iwami, Shingo ; Wakita, Takaji ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Kretzschmar, Mirjam E. E.</creatorcontrib><description>Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.</description><identifier>ISSN: 1549-1676</identifier><identifier>ISSN: 1549-1277</identifier><identifier>EISSN: 1549-1676</identifier><identifier>DOI: 10.1371/journal.pmed.1003660</identifier><identifier>PMID: 34228712</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>60 APPLIED LIFE SCIENCES ; Analysis ; Antiviral agents ; Antiviral drugs ; Antiviral therapy ; Antivirals ; Biological Science ; Biology and Life Sciences ; Clinical outcomes ; Clinical trials ; Coronaviruses ; COVID-19 ; Drug development ; Drugs ; Experimental design ; Mathematical models ; Medicine and Health Sciences ; Methods ; Parameter estimation ; Patients ; Placebos ; Public health ; Randomized controlled trials ; Research and Analysis Methods ; SARS CoV 2 ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Testing ; Viral load ; Viral replication ; Viruses</subject><ispartof>PLoS medicine, 2021-07, Vol.18 (7), p.e1003660-e1003660</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</citedby><cites>FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</cites><orcidid>0000-0001-6626-316X ; 0000-0002-1780-350X ; 0000-0002-2455-0002 ; 0000-0003-1474-5348 ; 0000-0001-5124-1419 ; 0000-0002-1720-3942 ; 0000-0002-0962-5758 ; 0000-0001-8942-0869 ; 0000-0002-1185-3987 ; 0000-0002-9510-5897 ; 0000-0002-5340-6851 ; 0000-0002-4602-9816 ; 0000-0002-3277-9552 ; 0000-0001-8545-5212 ; 000000016626316X ; 0000000232779552 ; 0000000209625758 ; 000000021780350X ; 0000000295105897 ; 0000000151241419 ; 0000000217203942 ; 0000000253406851 ; 0000000246029816 ; 0000000185455212 ; 0000000189420869 ; 0000000211853987 ; 0000000314745348 ; 0000000224550002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1822779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Kretzschmar, Mirjam E. E.</contributor><creatorcontrib>Iwanami, Shoya</creatorcontrib><creatorcontrib>Ejima, Keisuke</creatorcontrib><creatorcontrib>Kim, Kwang Su</creatorcontrib><creatorcontrib>Noshita, Koji</creatorcontrib><creatorcontrib>Fujita, Yasuhisa</creatorcontrib><creatorcontrib>Miyazaki, Taiga</creatorcontrib><creatorcontrib>Kohno, Shigeru</creatorcontrib><creatorcontrib>Miyazaki, Yoshitsugu</creatorcontrib><creatorcontrib>Morimoto, Shimpei</creatorcontrib><creatorcontrib>Nakaoka, Shinji</creatorcontrib><creatorcontrib>Koizumi, Yoshiki</creatorcontrib><creatorcontrib>Asai, Yusuke</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><creatorcontrib>Watashi, Koichi</creatorcontrib><creatorcontrib>Thompson, Robin N</creatorcontrib><creatorcontrib>Shibuya, Kenji</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Perelson, Alan S</creatorcontrib><creatorcontrib>Iwami, Shingo</creatorcontrib><creatorcontrib>Wakita, Takaji</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</title><title>PLoS medicine</title><description>Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Analysis</subject><subject>Antiviral agents</subject><subject>Antiviral drugs</subject><subject>Antiviral therapy</subject><subject>Antivirals</subject><subject>Biological Science</subject><subject>Biology and Life Sciences</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Drug development</subject><subject>Drugs</subject><subject>Experimental design</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Patients</subject><subject>Placebos</subject><subject>Public health</subject><subject>Randomized controlled trials</subject><subject>Research and Analysis Methods</subject><subject>SARS CoV 2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Testing</subject><subject>Viral load</subject><subject>Viral replication</subject><subject>Viruses</subject><issn>1549-1676</issn><issn>1549-1277</issn><issn>1549-1676</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBkhYICG42MV2juYCqWo5rFRRiUNvrYk9ybry2oudFMoj8NQ47IK6aC9AUWTH_ua3559Mlj1kdM7ymr249GNwYOfrFeo5ozSvKnorO2RlIWasqqvbN-YH2b0YLynlggp6NzvIC86bmvHD7McpDqgG4x3xHYmmd6YzCtxA0muuTABLdBh7gl2XuEgSeHJ-sTidMUG-mmFJAkL0DlqLJMJqPQ3mO0ZiHAngtF-lL02Ud0Pw1qbpEAzY-JIck5XXaI3rSRxGfX0_u9OlDXywHY-yz29efzp5Nzs7f7s4OT6bqaZuhpkGwUvBK94UIqctR1bqtlOqyhFYBQ1iXguV1xShzQXvRImFroXWQvOuy7v8KHu00V1bH-XWxih5WTGRAniTiMWG0B4u5TqYFYRr6cHIXws-9BLCYJRFWbKqbXiZ11DlRUmhbYC3oBgDXpYgqqT1anva2KZKKUw-gN0R3d1xZil7fyWTqhDVdJnHGwEfByOjMqley2SnS-WQrOG8rkWCnm1PCf7LiHGQKxMVWgsO_TglVwhOS0EnvSd_ofst2FI9pCyN63y6nJpE5XFVMyaKJJWo2R6qR4cpE--wM2l5h5_v4dOjcWXU3oDnOwHTb4Tfhh7GGOXi44f_YN__O3t-scs-vcEuEeywjN6OU9PEXbDYgCr4GAN2f6rMqJx69rfTcupZue3Z_CfyADFr</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Iwanami, Shoya</creator><creator>Ejima, Keisuke</creator><creator>Kim, Kwang Su</creator><creator>Noshita, Koji</creator><creator>Fujita, Yasuhisa</creator><creator>Miyazaki, Taiga</creator><creator>Kohno, Shigeru</creator><creator>Miyazaki, Yoshitsugu</creator><creator>Morimoto, Shimpei</creator><creator>Nakaoka, Shinji</creator><creator>Koizumi, Yoshiki</creator><creator>Asai, Yusuke</creator><creator>Aihara, Kazuyuki</creator><creator>Watashi, Koichi</creator><creator>Thompson, Robin N</creator><creator>Shibuya, Kenji</creator><creator>Fujiu, Katsuhito</creator><creator>Perelson, Alan S</creator><creator>Iwami, Shingo</creator><creator>Wakita, Takaji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><scope>CZK</scope><orcidid>https://orcid.org/0000-0001-6626-316X</orcidid><orcidid>https://orcid.org/0000-0002-1780-350X</orcidid><orcidid>https://orcid.org/0000-0002-2455-0002</orcidid><orcidid>https://orcid.org/0000-0003-1474-5348</orcidid><orcidid>https://orcid.org/0000-0001-5124-1419</orcidid><orcidid>https://orcid.org/0000-0002-1720-3942</orcidid><orcidid>https://orcid.org/0000-0002-0962-5758</orcidid><orcidid>https://orcid.org/0000-0001-8942-0869</orcidid><orcidid>https://orcid.org/0000-0002-1185-3987</orcidid><orcidid>https://orcid.org/0000-0002-9510-5897</orcidid><orcidid>https://orcid.org/0000-0002-5340-6851</orcidid><orcidid>https://orcid.org/0000-0002-4602-9816</orcidid><orcidid>https://orcid.org/0000-0002-3277-9552</orcidid><orcidid>https://orcid.org/0000-0001-8545-5212</orcidid><orcidid>https://orcid.org/000000016626316X</orcidid><orcidid>https://orcid.org/0000000232779552</orcidid><orcidid>https://orcid.org/0000000209625758</orcidid><orcidid>https://orcid.org/000000021780350X</orcidid><orcidid>https://orcid.org/0000000295105897</orcidid><orcidid>https://orcid.org/0000000151241419</orcidid><orcidid>https://orcid.org/0000000217203942</orcidid><orcidid>https://orcid.org/0000000253406851</orcidid><orcidid>https://orcid.org/0000000246029816</orcidid><orcidid>https://orcid.org/0000000185455212</orcidid><orcidid>https://orcid.org/0000000189420869</orcidid><orcidid>https://orcid.org/0000000211853987</orcidid><orcidid>https://orcid.org/0000000314745348</orcidid><orcidid>https://orcid.org/0000000224550002</orcidid></search><sort><creationdate>20210706</creationdate><title>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</title><author>Iwanami, Shoya ; Ejima, Keisuke ; Kim, Kwang Su ; Noshita, Koji ; Fujita, Yasuhisa ; Miyazaki, Taiga ; Kohno, Shigeru ; Miyazaki, Yoshitsugu ; Morimoto, Shimpei ; Nakaoka, Shinji ; Koizumi, Yoshiki ; Asai, Yusuke ; Aihara, Kazuyuki ; Watashi, Koichi ; Thompson, Robin N ; Shibuya, Kenji ; Fujiu, Katsuhito ; Perelson, Alan S ; Iwami, Shingo ; Wakita, Takaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Analysis</topic><topic>Antiviral agents</topic><topic>Antiviral drugs</topic><topic>Antiviral therapy</topic><topic>Antivirals</topic><topic>Biological Science</topic><topic>Biology and Life Sciences</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Drug development</topic><topic>Drugs</topic><topic>Experimental design</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Patients</topic><topic>Placebos</topic><topic>Public health</topic><topic>Randomized controlled trials</topic><topic>Research and Analysis Methods</topic><topic>SARS CoV 2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Testing</topic><topic>Viral load</topic><topic>Viral replication</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwanami, Shoya</creatorcontrib><creatorcontrib>Ejima, Keisuke</creatorcontrib><creatorcontrib>Kim, Kwang Su</creatorcontrib><creatorcontrib>Noshita, Koji</creatorcontrib><creatorcontrib>Fujita, Yasuhisa</creatorcontrib><creatorcontrib>Miyazaki, Taiga</creatorcontrib><creatorcontrib>Kohno, Shigeru</creatorcontrib><creatorcontrib>Miyazaki, Yoshitsugu</creatorcontrib><creatorcontrib>Morimoto, Shimpei</creatorcontrib><creatorcontrib>Nakaoka, Shinji</creatorcontrib><creatorcontrib>Koizumi, Yoshiki</creatorcontrib><creatorcontrib>Asai, Yusuke</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><creatorcontrib>Watashi, Koichi</creatorcontrib><creatorcontrib>Thompson, Robin N</creatorcontrib><creatorcontrib>Shibuya, Kenji</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Perelson, Alan S</creatorcontrib><creatorcontrib>Iwami, Shingo</creatorcontrib><creatorcontrib>Wakita, Takaji</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Medicine</collection><jtitle>PLoS medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwanami, Shoya</au><au>Ejima, Keisuke</au><au>Kim, Kwang Su</au><au>Noshita, Koji</au><au>Fujita, Yasuhisa</au><au>Miyazaki, Taiga</au><au>Kohno, Shigeru</au><au>Miyazaki, Yoshitsugu</au><au>Morimoto, Shimpei</au><au>Nakaoka, Shinji</au><au>Koizumi, Yoshiki</au><au>Asai, Yusuke</au><au>Aihara, Kazuyuki</au><au>Watashi, Koichi</au><au>Thompson, Robin N</au><au>Shibuya, Kenji</au><au>Fujiu, Katsuhito</au><au>Perelson, Alan S</au><au>Iwami, Shingo</au><au>Wakita, Takaji</au><au>Kretzschmar, Mirjam E. E.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</atitle><jtitle>PLoS medicine</jtitle><date>2021-07-06</date><risdate>2021</risdate><volume>18</volume><issue>7</issue><spage>e1003660</spage><epage>e1003660</epage><pages>e1003660-e1003660</pages><issn>1549-1676</issn><issn>1549-1277</issn><eissn>1549-1676</eissn><abstract>Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34228712</pmid><doi>10.1371/journal.pmed.1003660</doi><orcidid>https://orcid.org/0000-0001-6626-316X</orcidid><orcidid>https://orcid.org/0000-0002-1780-350X</orcidid><orcidid>https://orcid.org/0000-0002-2455-0002</orcidid><orcidid>https://orcid.org/0000-0003-1474-5348</orcidid><orcidid>https://orcid.org/0000-0001-5124-1419</orcidid><orcidid>https://orcid.org/0000-0002-1720-3942</orcidid><orcidid>https://orcid.org/0000-0002-0962-5758</orcidid><orcidid>https://orcid.org/0000-0001-8942-0869</orcidid><orcidid>https://orcid.org/0000-0002-1185-3987</orcidid><orcidid>https://orcid.org/0000-0002-9510-5897</orcidid><orcidid>https://orcid.org/0000-0002-5340-6851</orcidid><orcidid>https://orcid.org/0000-0002-4602-9816</orcidid><orcidid>https://orcid.org/0000-0002-3277-9552</orcidid><orcidid>https://orcid.org/0000-0001-8545-5212</orcidid><orcidid>https://orcid.org/000000016626316X</orcidid><orcidid>https://orcid.org/0000000232779552</orcidid><orcidid>https://orcid.org/0000000209625758</orcidid><orcidid>https://orcid.org/000000021780350X</orcidid><orcidid>https://orcid.org/0000000295105897</orcidid><orcidid>https://orcid.org/0000000151241419</orcidid><orcidid>https://orcid.org/0000000217203942</orcidid><orcidid>https://orcid.org/0000000253406851</orcidid><orcidid>https://orcid.org/0000000246029816</orcidid><orcidid>https://orcid.org/0000000185455212</orcidid><orcidid>https://orcid.org/0000000189420869</orcidid><orcidid>https://orcid.org/0000000211853987</orcidid><orcidid>https://orcid.org/0000000314745348</orcidid><orcidid>https://orcid.org/0000000224550002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-1676 |
ispartof | PLoS medicine, 2021-07, Vol.18 (7), p.e1003660-e1003660 |
issn | 1549-1676 1549-1277 1549-1676 |
language | eng |
recordid | cdi_plos_journals_2561939228 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | 60 APPLIED LIFE SCIENCES Analysis Antiviral agents Antiviral drugs Antiviral therapy Antivirals Biological Science Biology and Life Sciences Clinical outcomes Clinical trials Coronaviruses COVID-19 Drug development Drugs Experimental design Mathematical models Medicine and Health Sciences Methods Parameter estimation Patients Placebos Public health Randomized controlled trials Research and Analysis Methods SARS CoV 2 Severe acute respiratory syndrome coronavirus 2 Statistical analysis Testing Viral load Viral replication Viruses |
title | Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20significant%20antiviral%20drug%20effects%20on%20COVID-19%20with%20reasonable%20sample%20sizes%20in%20randomized%20controlled%20trials:%20A%20modeling%20study&rft.jtitle=PLoS%20medicine&rft.au=Iwanami,%20Shoya&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-07-06&rft.volume=18&rft.issue=7&rft.spage=e1003660&rft.epage=e1003660&rft.pages=e1003660-e1003660&rft.issn=1549-1676&rft.eissn=1549-1676&rft_id=info:doi/10.1371/journal.pmed.1003660&rft_dat=%3Cgale_plos_%3EA671194083%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561939228&rft_id=info:pmid/34228712&rft_galeid=A671194083&rft_doaj_id=oai_doaj_org_article_516b82537a63450ab8a2bac11a255a96&rfr_iscdi=true |