Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study

Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS medicine 2021-07, Vol.18 (7), p.e1003660-e1003660
Hauptverfasser: Iwanami, Shoya, Ejima, Keisuke, Kim, Kwang Su, Noshita, Koji, Fujita, Yasuhisa, Miyazaki, Taiga, Kohno, Shigeru, Miyazaki, Yoshitsugu, Morimoto, Shimpei, Nakaoka, Shinji, Koizumi, Yoshiki, Asai, Yusuke, Aihara, Kazuyuki, Watashi, Koichi, Thompson, Robin N, Shibuya, Kenji, Fujiu, Katsuhito, Perelson, Alan S, Iwami, Shingo, Wakita, Takaji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003660
container_issue 7
container_start_page e1003660
container_title PLoS medicine
container_volume 18
creator Iwanami, Shoya
Ejima, Keisuke
Kim, Kwang Su
Noshita, Koji
Fujita, Yasuhisa
Miyazaki, Taiga
Kohno, Shigeru
Miyazaki, Yoshitsugu
Morimoto, Shimpei
Nakaoka, Shinji
Koizumi, Yoshiki
Asai, Yusuke
Aihara, Kazuyuki
Watashi, Koichi
Thompson, Robin N
Shibuya, Kenji
Fujiu, Katsuhito
Perelson, Alan S
Iwami, Shingo
Wakita, Takaji
description Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value < 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.
doi_str_mv 10.1371/journal.pmed.1003660
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2561939228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671194083</galeid><doaj_id>oai_doaj_org_article_516b82537a63450ab8a2bac11a255a96</doaj_id><sourcerecordid>A671194083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBkhYICG42MV2juYCqWo5rFRRiUNvrYk9ybry2oudFMoj8NQ47IK6aC9AUWTH_ua3559Mlj1kdM7ymr249GNwYOfrFeo5ozSvKnorO2RlIWasqqvbN-YH2b0YLynlggp6NzvIC86bmvHD7McpDqgG4x3xHYmmd6YzCtxA0muuTABLdBh7gl2XuEgSeHJ-sTidMUG-mmFJAkL0DlqLJMJqPQ3mO0ZiHAngtF-lL02Ud0Pw1qbpEAzY-JIck5XXaI3rSRxGfX0_u9OlDXywHY-yz29efzp5Nzs7f7s4OT6bqaZuhpkGwUvBK94UIqctR1bqtlOqyhFYBQ1iXguV1xShzQXvRImFroXWQvOuy7v8KHu00V1bH-XWxih5WTGRAniTiMWG0B4u5TqYFYRr6cHIXws-9BLCYJRFWbKqbXiZ11DlRUmhbYC3oBgDXpYgqqT1anva2KZKKUw-gN0R3d1xZil7fyWTqhDVdJnHGwEfByOjMqley2SnS-WQrOG8rkWCnm1PCf7LiHGQKxMVWgsO_TglVwhOS0EnvSd_ofst2FI9pCyN63y6nJpE5XFVMyaKJJWo2R6qR4cpE--wM2l5h5_v4dOjcWXU3oDnOwHTb4Tfhh7GGOXi44f_YN__O3t-scs-vcEuEeywjN6OU9PEXbDYgCr4GAN2f6rMqJx69rfTcupZue3Z_CfyADFr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561939228</pqid></control><display><type>article</type><title>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Iwanami, Shoya ; Ejima, Keisuke ; Kim, Kwang Su ; Noshita, Koji ; Fujita, Yasuhisa ; Miyazaki, Taiga ; Kohno, Shigeru ; Miyazaki, Yoshitsugu ; Morimoto, Shimpei ; Nakaoka, Shinji ; Koizumi, Yoshiki ; Asai, Yusuke ; Aihara, Kazuyuki ; Watashi, Koichi ; Thompson, Robin N ; Shibuya, Kenji ; Fujiu, Katsuhito ; Perelson, Alan S ; Iwami, Shingo ; Wakita, Takaji</creator><contributor>Kretzschmar, Mirjam E. E.</contributor><creatorcontrib>Iwanami, Shoya ; Ejima, Keisuke ; Kim, Kwang Su ; Noshita, Koji ; Fujita, Yasuhisa ; Miyazaki, Taiga ; Kohno, Shigeru ; Miyazaki, Yoshitsugu ; Morimoto, Shimpei ; Nakaoka, Shinji ; Koizumi, Yoshiki ; Asai, Yusuke ; Aihara, Kazuyuki ; Watashi, Koichi ; Thompson, Robin N ; Shibuya, Kenji ; Fujiu, Katsuhito ; Perelson, Alan S ; Iwami, Shingo ; Wakita, Takaji ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Kretzschmar, Mirjam E. E.</creatorcontrib><description>Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value &lt; 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.</description><identifier>ISSN: 1549-1676</identifier><identifier>ISSN: 1549-1277</identifier><identifier>EISSN: 1549-1676</identifier><identifier>DOI: 10.1371/journal.pmed.1003660</identifier><identifier>PMID: 34228712</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>60 APPLIED LIFE SCIENCES ; Analysis ; Antiviral agents ; Antiviral drugs ; Antiviral therapy ; Antivirals ; Biological Science ; Biology and Life Sciences ; Clinical outcomes ; Clinical trials ; Coronaviruses ; COVID-19 ; Drug development ; Drugs ; Experimental design ; Mathematical models ; Medicine and Health Sciences ; Methods ; Parameter estimation ; Patients ; Placebos ; Public health ; Randomized controlled trials ; Research and Analysis Methods ; SARS CoV 2 ; Severe acute respiratory syndrome coronavirus 2 ; Statistical analysis ; Testing ; Viral load ; Viral replication ; Viruses</subject><ispartof>PLoS medicine, 2021-07, Vol.18 (7), p.e1003660-e1003660</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</citedby><cites>FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</cites><orcidid>0000-0001-6626-316X ; 0000-0002-1780-350X ; 0000-0002-2455-0002 ; 0000-0003-1474-5348 ; 0000-0001-5124-1419 ; 0000-0002-1720-3942 ; 0000-0002-0962-5758 ; 0000-0001-8942-0869 ; 0000-0002-1185-3987 ; 0000-0002-9510-5897 ; 0000-0002-5340-6851 ; 0000-0002-4602-9816 ; 0000-0002-3277-9552 ; 0000-0001-8545-5212 ; 000000016626316X ; 0000000232779552 ; 0000000209625758 ; 000000021780350X ; 0000000295105897 ; 0000000151241419 ; 0000000217203942 ; 0000000253406851 ; 0000000246029816 ; 0000000185455212 ; 0000000189420869 ; 0000000211853987 ; 0000000314745348 ; 0000000224550002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8259968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23849,27907,27908,53774,53776,79351,79352</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1822779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Kretzschmar, Mirjam E. E.</contributor><creatorcontrib>Iwanami, Shoya</creatorcontrib><creatorcontrib>Ejima, Keisuke</creatorcontrib><creatorcontrib>Kim, Kwang Su</creatorcontrib><creatorcontrib>Noshita, Koji</creatorcontrib><creatorcontrib>Fujita, Yasuhisa</creatorcontrib><creatorcontrib>Miyazaki, Taiga</creatorcontrib><creatorcontrib>Kohno, Shigeru</creatorcontrib><creatorcontrib>Miyazaki, Yoshitsugu</creatorcontrib><creatorcontrib>Morimoto, Shimpei</creatorcontrib><creatorcontrib>Nakaoka, Shinji</creatorcontrib><creatorcontrib>Koizumi, Yoshiki</creatorcontrib><creatorcontrib>Asai, Yusuke</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><creatorcontrib>Watashi, Koichi</creatorcontrib><creatorcontrib>Thompson, Robin N</creatorcontrib><creatorcontrib>Shibuya, Kenji</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Perelson, Alan S</creatorcontrib><creatorcontrib>Iwami, Shingo</creatorcontrib><creatorcontrib>Wakita, Takaji</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</title><title>PLoS medicine</title><description>Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value &lt; 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Analysis</subject><subject>Antiviral agents</subject><subject>Antiviral drugs</subject><subject>Antiviral therapy</subject><subject>Antivirals</subject><subject>Biological Science</subject><subject>Biology and Life Sciences</subject><subject>Clinical outcomes</subject><subject>Clinical trials</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Drug development</subject><subject>Drugs</subject><subject>Experimental design</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Parameter estimation</subject><subject>Patients</subject><subject>Placebos</subject><subject>Public health</subject><subject>Randomized controlled trials</subject><subject>Research and Analysis Methods</subject><subject>SARS CoV 2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Statistical analysis</subject><subject>Testing</subject><subject>Viral load</subject><subject>Viral replication</subject><subject>Viruses</subject><issn>1549-1676</issn><issn>1549-1277</issn><issn>1549-1676</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBkhYICG42MV2juYCqWo5rFRRiUNvrYk9ybry2oudFMoj8NQ47IK6aC9AUWTH_ua3559Mlj1kdM7ymr249GNwYOfrFeo5ozSvKnorO2RlIWasqqvbN-YH2b0YLynlggp6NzvIC86bmvHD7McpDqgG4x3xHYmmd6YzCtxA0muuTABLdBh7gl2XuEgSeHJ-sTidMUG-mmFJAkL0DlqLJMJqPQ3mO0ZiHAngtF-lL02Ud0Pw1qbpEAzY-JIck5XXaI3rSRxGfX0_u9OlDXywHY-yz29efzp5Nzs7f7s4OT6bqaZuhpkGwUvBK94UIqctR1bqtlOqyhFYBQ1iXguV1xShzQXvRImFroXWQvOuy7v8KHu00V1bH-XWxih5WTGRAniTiMWG0B4u5TqYFYRr6cHIXws-9BLCYJRFWbKqbXiZ11DlRUmhbYC3oBgDXpYgqqT1anva2KZKKUw-gN0R3d1xZil7fyWTqhDVdJnHGwEfByOjMqley2SnS-WQrOG8rkWCnm1PCf7LiHGQKxMVWgsO_TglVwhOS0EnvSd_ofst2FI9pCyN63y6nJpE5XFVMyaKJJWo2R6qR4cpE--wM2l5h5_v4dOjcWXU3oDnOwHTb4Tfhh7GGOXi44f_YN__O3t-scs-vcEuEeywjN6OU9PEXbDYgCr4GAN2f6rMqJx69rfTcupZue3Z_CfyADFr</recordid><startdate>20210706</startdate><enddate>20210706</enddate><creator>Iwanami, Shoya</creator><creator>Ejima, Keisuke</creator><creator>Kim, Kwang Su</creator><creator>Noshita, Koji</creator><creator>Fujita, Yasuhisa</creator><creator>Miyazaki, Taiga</creator><creator>Kohno, Shigeru</creator><creator>Miyazaki, Yoshitsugu</creator><creator>Morimoto, Shimpei</creator><creator>Nakaoka, Shinji</creator><creator>Koizumi, Yoshiki</creator><creator>Asai, Yusuke</creator><creator>Aihara, Kazuyuki</creator><creator>Watashi, Koichi</creator><creator>Thompson, Robin N</creator><creator>Shibuya, Kenji</creator><creator>Fujiu, Katsuhito</creator><creator>Perelson, Alan S</creator><creator>Iwami, Shingo</creator><creator>Wakita, Takaji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><scope>CZK</scope><orcidid>https://orcid.org/0000-0001-6626-316X</orcidid><orcidid>https://orcid.org/0000-0002-1780-350X</orcidid><orcidid>https://orcid.org/0000-0002-2455-0002</orcidid><orcidid>https://orcid.org/0000-0003-1474-5348</orcidid><orcidid>https://orcid.org/0000-0001-5124-1419</orcidid><orcidid>https://orcid.org/0000-0002-1720-3942</orcidid><orcidid>https://orcid.org/0000-0002-0962-5758</orcidid><orcidid>https://orcid.org/0000-0001-8942-0869</orcidid><orcidid>https://orcid.org/0000-0002-1185-3987</orcidid><orcidid>https://orcid.org/0000-0002-9510-5897</orcidid><orcidid>https://orcid.org/0000-0002-5340-6851</orcidid><orcidid>https://orcid.org/0000-0002-4602-9816</orcidid><orcidid>https://orcid.org/0000-0002-3277-9552</orcidid><orcidid>https://orcid.org/0000-0001-8545-5212</orcidid><orcidid>https://orcid.org/000000016626316X</orcidid><orcidid>https://orcid.org/0000000232779552</orcidid><orcidid>https://orcid.org/0000000209625758</orcidid><orcidid>https://orcid.org/000000021780350X</orcidid><orcidid>https://orcid.org/0000000295105897</orcidid><orcidid>https://orcid.org/0000000151241419</orcidid><orcidid>https://orcid.org/0000000217203942</orcidid><orcidid>https://orcid.org/0000000253406851</orcidid><orcidid>https://orcid.org/0000000246029816</orcidid><orcidid>https://orcid.org/0000000185455212</orcidid><orcidid>https://orcid.org/0000000189420869</orcidid><orcidid>https://orcid.org/0000000211853987</orcidid><orcidid>https://orcid.org/0000000314745348</orcidid><orcidid>https://orcid.org/0000000224550002</orcidid></search><sort><creationdate>20210706</creationdate><title>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</title><author>Iwanami, Shoya ; Ejima, Keisuke ; Kim, Kwang Su ; Noshita, Koji ; Fujita, Yasuhisa ; Miyazaki, Taiga ; Kohno, Shigeru ; Miyazaki, Yoshitsugu ; Morimoto, Shimpei ; Nakaoka, Shinji ; Koizumi, Yoshiki ; Asai, Yusuke ; Aihara, Kazuyuki ; Watashi, Koichi ; Thompson, Robin N ; Shibuya, Kenji ; Fujiu, Katsuhito ; Perelson, Alan S ; Iwami, Shingo ; Wakita, Takaji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c878t-da925926284930b2e15dbfcc63ea16a8ee379c370eab392f95e4d79dd9d2ff3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Analysis</topic><topic>Antiviral agents</topic><topic>Antiviral drugs</topic><topic>Antiviral therapy</topic><topic>Antivirals</topic><topic>Biological Science</topic><topic>Biology and Life Sciences</topic><topic>Clinical outcomes</topic><topic>Clinical trials</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Drug development</topic><topic>Drugs</topic><topic>Experimental design</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Parameter estimation</topic><topic>Patients</topic><topic>Placebos</topic><topic>Public health</topic><topic>Randomized controlled trials</topic><topic>Research and Analysis Methods</topic><topic>SARS CoV 2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Statistical analysis</topic><topic>Testing</topic><topic>Viral load</topic><topic>Viral replication</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iwanami, Shoya</creatorcontrib><creatorcontrib>Ejima, Keisuke</creatorcontrib><creatorcontrib>Kim, Kwang Su</creatorcontrib><creatorcontrib>Noshita, Koji</creatorcontrib><creatorcontrib>Fujita, Yasuhisa</creatorcontrib><creatorcontrib>Miyazaki, Taiga</creatorcontrib><creatorcontrib>Kohno, Shigeru</creatorcontrib><creatorcontrib>Miyazaki, Yoshitsugu</creatorcontrib><creatorcontrib>Morimoto, Shimpei</creatorcontrib><creatorcontrib>Nakaoka, Shinji</creatorcontrib><creatorcontrib>Koizumi, Yoshiki</creatorcontrib><creatorcontrib>Asai, Yusuke</creatorcontrib><creatorcontrib>Aihara, Kazuyuki</creatorcontrib><creatorcontrib>Watashi, Koichi</creatorcontrib><creatorcontrib>Thompson, Robin N</creatorcontrib><creatorcontrib>Shibuya, Kenji</creatorcontrib><creatorcontrib>Fujiu, Katsuhito</creatorcontrib><creatorcontrib>Perelson, Alan S</creatorcontrib><creatorcontrib>Iwami, Shingo</creatorcontrib><creatorcontrib>Wakita, Takaji</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Medicine</collection><jtitle>PLoS medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iwanami, Shoya</au><au>Ejima, Keisuke</au><au>Kim, Kwang Su</au><au>Noshita, Koji</au><au>Fujita, Yasuhisa</au><au>Miyazaki, Taiga</au><au>Kohno, Shigeru</au><au>Miyazaki, Yoshitsugu</au><au>Morimoto, Shimpei</au><au>Nakaoka, Shinji</au><au>Koizumi, Yoshiki</au><au>Asai, Yusuke</au><au>Aihara, Kazuyuki</au><au>Watashi, Koichi</au><au>Thompson, Robin N</au><au>Shibuya, Kenji</au><au>Fujiu, Katsuhito</au><au>Perelson, Alan S</au><au>Iwami, Shingo</au><au>Wakita, Takaji</au><au>Kretzschmar, Mirjam E. E.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study</atitle><jtitle>PLoS medicine</jtitle><date>2021-07-06</date><risdate>2021</risdate><volume>18</volume><issue>7</issue><spage>e1003660</spage><epage>e1003660</epage><pages>e1003660-e1003660</pages><issn>1549-1676</issn><issn>1549-1277</issn><eissn>1549-1676</eissn><abstract>Development of an effective antiviral drug for Coronavirus Disease 2019 (COVID-19) is a global health priority. Although several candidate drugs have been identified through in vitro and in vivo models, consistent and compelling evidence from clinical studies is limited. The lack of evidence from clinical trials may stem in part from the imperfect design of the trials. We investigated how clinical trials for antivirals need to be designed, especially focusing on the sample size in randomized controlled trials. A modeling study was conducted to help understand the reasons behind inconsistent clinical trial findings and to design better clinical trials. We first analyzed longitudinal viral load data for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) without antiviral treatment by use of a within-host virus dynamics model. The fitted viral load was categorized into 3 different groups by a clustering approach. Comparison of the estimated parameters showed that the 3 distinct groups were characterized by different virus decay rates (p-value &lt; 0.001). The mean decay rates were 1.17 d.sup.-1 (95% CI: 1.06 to 1.27 d.sup.-1 ), 0.777 d.sup.-1 (0.716 to 0.838 d.sup.-1 ), and 0.450 d.sup.-1 (0.378 to 0.522 d.sup.-1) for the 3 groups, respectively. Such heterogeneity in virus dynamics could be a confounding variable if it is associated with treatment allocation in compassionate use programs (i.e., observational studies). In this study, we found that estimated association in observational studies can be biased due to large heterogeneity in viral dynamics among infected individuals, and statistically significant effect in randomized controlled trials may be difficult to be detected due to small sample size. The sample size can be dramatically reduced by recruiting patients immediately after developing symptoms. We believe this is the first study investigated the study design of clinical trials for antiviral treatment using the viral dynamics model.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34228712</pmid><doi>10.1371/journal.pmed.1003660</doi><orcidid>https://orcid.org/0000-0001-6626-316X</orcidid><orcidid>https://orcid.org/0000-0002-1780-350X</orcidid><orcidid>https://orcid.org/0000-0002-2455-0002</orcidid><orcidid>https://orcid.org/0000-0003-1474-5348</orcidid><orcidid>https://orcid.org/0000-0001-5124-1419</orcidid><orcidid>https://orcid.org/0000-0002-1720-3942</orcidid><orcidid>https://orcid.org/0000-0002-0962-5758</orcidid><orcidid>https://orcid.org/0000-0001-8942-0869</orcidid><orcidid>https://orcid.org/0000-0002-1185-3987</orcidid><orcidid>https://orcid.org/0000-0002-9510-5897</orcidid><orcidid>https://orcid.org/0000-0002-5340-6851</orcidid><orcidid>https://orcid.org/0000-0002-4602-9816</orcidid><orcidid>https://orcid.org/0000-0002-3277-9552</orcidid><orcidid>https://orcid.org/0000-0001-8545-5212</orcidid><orcidid>https://orcid.org/000000016626316X</orcidid><orcidid>https://orcid.org/0000000232779552</orcidid><orcidid>https://orcid.org/0000000209625758</orcidid><orcidid>https://orcid.org/000000021780350X</orcidid><orcidid>https://orcid.org/0000000295105897</orcidid><orcidid>https://orcid.org/0000000151241419</orcidid><orcidid>https://orcid.org/0000000217203942</orcidid><orcidid>https://orcid.org/0000000253406851</orcidid><orcidid>https://orcid.org/0000000246029816</orcidid><orcidid>https://orcid.org/0000000185455212</orcidid><orcidid>https://orcid.org/0000000189420869</orcidid><orcidid>https://orcid.org/0000000211853987</orcidid><orcidid>https://orcid.org/0000000314745348</orcidid><orcidid>https://orcid.org/0000000224550002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-1676
ispartof PLoS medicine, 2021-07, Vol.18 (7), p.e1003660-e1003660
issn 1549-1676
1549-1277
1549-1676
language eng
recordid cdi_plos_journals_2561939228
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects 60 APPLIED LIFE SCIENCES
Analysis
Antiviral agents
Antiviral drugs
Antiviral therapy
Antivirals
Biological Science
Biology and Life Sciences
Clinical outcomes
Clinical trials
Coronaviruses
COVID-19
Drug development
Drugs
Experimental design
Mathematical models
Medicine and Health Sciences
Methods
Parameter estimation
Patients
Placebos
Public health
Randomized controlled trials
Research and Analysis Methods
SARS CoV 2
Severe acute respiratory syndrome coronavirus 2
Statistical analysis
Testing
Viral load
Viral replication
Viruses
title Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A22%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20significant%20antiviral%20drug%20effects%20on%20COVID-19%20with%20reasonable%20sample%20sizes%20in%20randomized%20controlled%20trials:%20A%20modeling%20study&rft.jtitle=PLoS%20medicine&rft.au=Iwanami,%20Shoya&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-07-06&rft.volume=18&rft.issue=7&rft.spage=e1003660&rft.epage=e1003660&rft.pages=e1003660-e1003660&rft.issn=1549-1676&rft.eissn=1549-1676&rft_id=info:doi/10.1371/journal.pmed.1003660&rft_dat=%3Cgale_plos_%3EA671194083%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561939228&rft_id=info:pmid/34228712&rft_galeid=A671194083&rft_doaj_id=oai_doaj_org_article_516b82537a63450ab8a2bac11a255a96&rfr_iscdi=true