Deep learning with robustness to missing data: A novel approach to the detection of COVID-19

In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-07, Vol.16 (7), p.e0255301-e0255301
Hauptverfasser: Çallı, Erdi, Murphy, Keelin, Kurstjens, Steef, Samson, Tijs, Herpers, Robert, Smits, Henk, Rutten, Matthieu, van Ginneken, Bram
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0255301
container_issue 7
container_start_page e0255301
container_title PloS one
container_volume 16
creator Çallı, Erdi
Murphy, Keelin
Kurstjens, Steef
Samson, Tijs
Herpers, Robert
Smits, Henk
Rutten, Matthieu
van Ginneken, Bram
description In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.
doi_str_mv 10.1371/journal.pone.0255301
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2556835022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670178720</galeid><doaj_id>oai_doaj_org_article_681712fb93014f339233ea04a30952d3</doaj_id><sourcerecordid>A670178720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFxySnH6kXwjDrx8DCgB97JYQ0PZ126DTdJF3135vudJep7IXkIiF5znuSN-cEwXNKFhQy-m6nB9PJdtHrDheEJQkQ-iA4pTmwKGUEHh6tT4In1u4ISYCn6ePgBGJgOSTxafDzHLEPW5Sma7pt-KtxdWh0MVjXobWh0-G-sXY8KqWT78Nl2OlrbEPZ90ZLVY-EqzEs0aFyje5CXYWrzeX6PKL50-BRJVuLz6b5LPjx6eP31ZfoYvN5vVpeRCrNmYt4laWgMM1VUZCKSuASCwBIMC54lmSkKtNSlRwVBaIQE1QkL-JckZLQlDM4C14edPtWWzEZY4X3JOWQEDYS6wNRarkTvWn20vwRWjbiZkObrZDGNapFkXKaUVYVufczrgByBoCSxBJInrASvNaHKdtQ7LFU2Dkj25no_KRrarHV14IDA86JF3gzCRh9NaB1wnussG1lh3q4uXfGWBJT7tFX_6D3v26ittI_oOkq7fOqUVQs04zQjGdsTLu4h_KjxH2jfBVVjd-fBbydBXjG4W-3lYO1Yv3t6_-zm8s5-_qIrVG2rra6HcbysXMwPoDKaGsNVncmUyLGJrh1Q4xNIKYm8GEvjj_oLui26uEvw4X_Zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556835022</pqid></control><display><type>article</type><title>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Çallı, Erdi ; Murphy, Keelin ; Kurstjens, Steef ; Samson, Tijs ; Herpers, Robert ; Smits, Henk ; Rutten, Matthieu ; van Ginneken, Bram</creator><contributor>Stoean, Ruxandra</contributor><creatorcontrib>Çallı, Erdi ; Murphy, Keelin ; Kurstjens, Steef ; Samson, Tijs ; Herpers, Robert ; Smits, Henk ; Rutten, Matthieu ; van Ginneken, Bram ; Stoean, Ruxandra</creatorcontrib><description>In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0255301</identifier><identifier>PMID: 34329354</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Biology and Life Sciences ; Cardiovascular disease ; Chest ; Computer and Information Sciences ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 Nucleic Acid Testing ; Databases, Factual ; Datasets ; Deep Learning ; Experiments ; Health aspects ; Hematology ; Hospitals ; Humans ; Laboratories ; Laboratory tests ; Machine learning ; Management ; Mathematical models ; Medical research ; Medicine and Health Sciences ; Missing data ; Missing observations (Statistics) ; Model testing ; Models, Theoretical ; Mortality ; Neural networks ; Pandemics ; Patients ; Performance evaluation ; Polymerase chain reaction ; Random Allocation ; Research and Analysis Methods ; Robustness ; SARS-CoV-2 ; Statistical analysis ; Testing time</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0255301-e0255301</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Çallı et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Çallı et al 2021 Çallı et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</citedby><cites>FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</cites><orcidid>0000-0003-3962-7276 ; 0000-0003-2028-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323880/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323880/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34329354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stoean, Ruxandra</contributor><creatorcontrib>Çallı, Erdi</creatorcontrib><creatorcontrib>Murphy, Keelin</creatorcontrib><creatorcontrib>Kurstjens, Steef</creatorcontrib><creatorcontrib>Samson, Tijs</creatorcontrib><creatorcontrib>Herpers, Robert</creatorcontrib><creatorcontrib>Smits, Henk</creatorcontrib><creatorcontrib>Rutten, Matthieu</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><title>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.</description><subject>Ablation</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Chest</subject><subject>Computer and Information Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 Nucleic Acid Testing</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Machine learning</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Missing data</subject><subject>Missing observations (Statistics)</subject><subject>Model testing</subject><subject>Models, Theoretical</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Polymerase chain reaction</subject><subject>Random Allocation</subject><subject>Research and Analysis Methods</subject><subject>Robustness</subject><subject>SARS-CoV-2</subject><subject>Statistical analysis</subject><subject>Testing time</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFxySnH6kXwjDrx8DCgB97JYQ0PZ126DTdJF3135vudJep7IXkIiF5znuSN-cEwXNKFhQy-m6nB9PJdtHrDheEJQkQ-iA4pTmwKGUEHh6tT4In1u4ISYCn6ePgBGJgOSTxafDzHLEPW5Sma7pt-KtxdWh0MVjXobWh0-G-sXY8KqWT78Nl2OlrbEPZ90ZLVY-EqzEs0aFyje5CXYWrzeX6PKL50-BRJVuLz6b5LPjx6eP31ZfoYvN5vVpeRCrNmYt4laWgMM1VUZCKSuASCwBIMC54lmSkKtNSlRwVBaIQE1QkL-JckZLQlDM4C14edPtWWzEZY4X3JOWQEDYS6wNRarkTvWn20vwRWjbiZkObrZDGNapFkXKaUVYVufczrgByBoCSxBJInrASvNaHKdtQ7LFU2Dkj25no_KRrarHV14IDA86JF3gzCRh9NaB1wnussG1lh3q4uXfGWBJT7tFX_6D3v26ittI_oOkq7fOqUVQs04zQjGdsTLu4h_KjxH2jfBVVjd-fBbydBXjG4W-3lYO1Yv3t6_-zm8s5-_qIrVG2rra6HcbysXMwPoDKaGsNVncmUyLGJrh1Q4xNIKYm8GEvjj_oLui26uEvw4X_Zw</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Çallı, Erdi</creator><creator>Murphy, Keelin</creator><creator>Kurstjens, Steef</creator><creator>Samson, Tijs</creator><creator>Herpers, Robert</creator><creator>Smits, Henk</creator><creator>Rutten, Matthieu</creator><creator>van Ginneken, Bram</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3962-7276</orcidid><orcidid>https://orcid.org/0000-0003-2028-8972</orcidid></search><sort><creationdate>20210730</creationdate><title>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</title><author>Çallı, Erdi ; Murphy, Keelin ; Kurstjens, Steef ; Samson, Tijs ; Herpers, Robert ; Smits, Henk ; Rutten, Matthieu ; van Ginneken, Bram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Chest</topic><topic>Computer and Information Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 Nucleic Acid Testing</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Machine learning</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Missing data</topic><topic>Missing observations (Statistics)</topic><topic>Model testing</topic><topic>Models, Theoretical</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Polymerase chain reaction</topic><topic>Random Allocation</topic><topic>Research and Analysis Methods</topic><topic>Robustness</topic><topic>SARS-CoV-2</topic><topic>Statistical analysis</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çallı, Erdi</creatorcontrib><creatorcontrib>Murphy, Keelin</creatorcontrib><creatorcontrib>Kurstjens, Steef</creatorcontrib><creatorcontrib>Samson, Tijs</creatorcontrib><creatorcontrib>Herpers, Robert</creatorcontrib><creatorcontrib>Smits, Henk</creatorcontrib><creatorcontrib>Rutten, Matthieu</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çallı, Erdi</au><au>Murphy, Keelin</au><au>Kurstjens, Steef</au><au>Samson, Tijs</au><au>Herpers, Robert</au><au>Smits, Henk</au><au>Rutten, Matthieu</au><au>van Ginneken, Bram</au><au>Stoean, Ruxandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-07-30</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0255301</spage><epage>e0255301</epage><pages>e0255301-e0255301</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34329354</pmid><doi>10.1371/journal.pone.0255301</doi><tpages>e0255301</tpages><orcidid>https://orcid.org/0000-0003-3962-7276</orcidid><orcidid>https://orcid.org/0000-0003-2028-8972</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-07, Vol.16 (7), p.e0255301-e0255301
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2556835022
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Ablation
Biology and Life Sciences
Cardiovascular disease
Chest
Computer and Information Sciences
Coronaviruses
COVID-19
COVID-19 - diagnosis
COVID-19 Nucleic Acid Testing
Databases, Factual
Datasets
Deep Learning
Experiments
Health aspects
Hematology
Hospitals
Humans
Laboratories
Laboratory tests
Machine learning
Management
Mathematical models
Medical research
Medicine and Health Sciences
Missing data
Missing observations (Statistics)
Model testing
Models, Theoretical
Mortality
Neural networks
Pandemics
Patients
Performance evaluation
Polymerase chain reaction
Random Allocation
Research and Analysis Methods
Robustness
SARS-CoV-2
Statistical analysis
Testing time
title Deep learning with robustness to missing data: A novel approach to the detection of COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20with%20robustness%20to%20missing%20data:%20A%20novel%20approach%20to%20the%20detection%20of%20COVID-19&rft.jtitle=PloS%20one&rft.au=%C3%87all%C4%B1,%20Erdi&rft.date=2021-07-30&rft.volume=16&rft.issue=7&rft.spage=e0255301&rft.epage=e0255301&rft.pages=e0255301-e0255301&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0255301&rft_dat=%3Cgale_plos_%3EA670178720%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556835022&rft_id=info:pmid/34329354&rft_galeid=A670178720&rft_doaj_id=oai_doaj_org_article_681712fb93014f339233ea04a30952d3&rfr_iscdi=true