Deep learning with robustness to missing data: A novel approach to the detection of COVID-19
In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-07, Vol.16 (7), p.e0255301-e0255301 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0255301 |
---|---|
container_issue | 7 |
container_start_page | e0255301 |
container_title | PloS one |
container_volume | 16 |
creator | Çallı, Erdi Murphy, Keelin Kurstjens, Steef Samson, Tijs Herpers, Robert Smits, Henk Rutten, Matthieu van Ginneken, Bram |
description | In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919. |
doi_str_mv | 10.1371/journal.pone.0255301 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2556835022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670178720</galeid><doaj_id>oai_doaj_org_article_681712fb93014f339233ea04a30952d3</doaj_id><sourcerecordid>A670178720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFxySnH6kXwjDrx8DCgB97JYQ0PZ126DTdJF3135vudJep7IXkIiF5znuSN-cEwXNKFhQy-m6nB9PJdtHrDheEJQkQ-iA4pTmwKGUEHh6tT4In1u4ISYCn6ePgBGJgOSTxafDzHLEPW5Sma7pt-KtxdWh0MVjXobWh0-G-sXY8KqWT78Nl2OlrbEPZ90ZLVY-EqzEs0aFyje5CXYWrzeX6PKL50-BRJVuLz6b5LPjx6eP31ZfoYvN5vVpeRCrNmYt4laWgMM1VUZCKSuASCwBIMC54lmSkKtNSlRwVBaIQE1QkL-JckZLQlDM4C14edPtWWzEZY4X3JOWQEDYS6wNRarkTvWn20vwRWjbiZkObrZDGNapFkXKaUVYVufczrgByBoCSxBJInrASvNaHKdtQ7LFU2Dkj25no_KRrarHV14IDA86JF3gzCRh9NaB1wnussG1lh3q4uXfGWBJT7tFX_6D3v26ittI_oOkq7fOqUVQs04zQjGdsTLu4h_KjxH2jfBVVjd-fBbydBXjG4W-3lYO1Yv3t6_-zm8s5-_qIrVG2rra6HcbysXMwPoDKaGsNVncmUyLGJrh1Q4xNIKYm8GEvjj_oLui26uEvw4X_Zw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556835022</pqid></control><display><type>article</type><title>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Çallı, Erdi ; Murphy, Keelin ; Kurstjens, Steef ; Samson, Tijs ; Herpers, Robert ; Smits, Henk ; Rutten, Matthieu ; van Ginneken, Bram</creator><contributor>Stoean, Ruxandra</contributor><creatorcontrib>Çallı, Erdi ; Murphy, Keelin ; Kurstjens, Steef ; Samson, Tijs ; Herpers, Robert ; Smits, Henk ; Rutten, Matthieu ; van Ginneken, Bram ; Stoean, Ruxandra</creatorcontrib><description>In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0255301</identifier><identifier>PMID: 34329354</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Ablation ; Biology and Life Sciences ; Cardiovascular disease ; Chest ; Computer and Information Sciences ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 Nucleic Acid Testing ; Databases, Factual ; Datasets ; Deep Learning ; Experiments ; Health aspects ; Hematology ; Hospitals ; Humans ; Laboratories ; Laboratory tests ; Machine learning ; Management ; Mathematical models ; Medical research ; Medicine and Health Sciences ; Missing data ; Missing observations (Statistics) ; Model testing ; Models, Theoretical ; Mortality ; Neural networks ; Pandemics ; Patients ; Performance evaluation ; Polymerase chain reaction ; Random Allocation ; Research and Analysis Methods ; Robustness ; SARS-CoV-2 ; Statistical analysis ; Testing time</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0255301-e0255301</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Çallı et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Çallı et al 2021 Çallı et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</citedby><cites>FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</cites><orcidid>0000-0003-3962-7276 ; 0000-0003-2028-8972</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323880/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323880/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34329354$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stoean, Ruxandra</contributor><creatorcontrib>Çallı, Erdi</creatorcontrib><creatorcontrib>Murphy, Keelin</creatorcontrib><creatorcontrib>Kurstjens, Steef</creatorcontrib><creatorcontrib>Samson, Tijs</creatorcontrib><creatorcontrib>Herpers, Robert</creatorcontrib><creatorcontrib>Smits, Henk</creatorcontrib><creatorcontrib>Rutten, Matthieu</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><title>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.</description><subject>Ablation</subject><subject>Biology and Life Sciences</subject><subject>Cardiovascular disease</subject><subject>Chest</subject><subject>Computer and Information Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 Nucleic Acid Testing</subject><subject>Databases, Factual</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Experiments</subject><subject>Health aspects</subject><subject>Hematology</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Laboratory tests</subject><subject>Machine learning</subject><subject>Management</subject><subject>Mathematical models</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Missing data</subject><subject>Missing observations (Statistics)</subject><subject>Model testing</subject><subject>Models, Theoretical</subject><subject>Mortality</subject><subject>Neural networks</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Performance evaluation</subject><subject>Polymerase chain reaction</subject><subject>Random Allocation</subject><subject>Research and Analysis Methods</subject><subject>Robustness</subject><subject>SARS-CoV-2</subject><subject>Statistical analysis</subject><subject>Testing time</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFxySnH6kXwjDrx8DCgB97JYQ0PZ126DTdJF3135vudJep7IXkIiF5znuSN-cEwXNKFhQy-m6nB9PJdtHrDheEJQkQ-iA4pTmwKGUEHh6tT4In1u4ISYCn6ePgBGJgOSTxafDzHLEPW5Sma7pt-KtxdWh0MVjXobWh0-G-sXY8KqWT78Nl2OlrbEPZ90ZLVY-EqzEs0aFyje5CXYWrzeX6PKL50-BRJVuLz6b5LPjx6eP31ZfoYvN5vVpeRCrNmYt4laWgMM1VUZCKSuASCwBIMC54lmSkKtNSlRwVBaIQE1QkL-JckZLQlDM4C14edPtWWzEZY4X3JOWQEDYS6wNRarkTvWn20vwRWjbiZkObrZDGNapFkXKaUVYVufczrgByBoCSxBJInrASvNaHKdtQ7LFU2Dkj25no_KRrarHV14IDA86JF3gzCRh9NaB1wnussG1lh3q4uXfGWBJT7tFX_6D3v26ittI_oOkq7fOqUVQs04zQjGdsTLu4h_KjxH2jfBVVjd-fBbydBXjG4W-3lYO1Yv3t6_-zm8s5-_qIrVG2rra6HcbysXMwPoDKaGsNVncmUyLGJrh1Q4xNIKYm8GEvjj_oLui26uEvw4X_Zw</recordid><startdate>20210730</startdate><enddate>20210730</enddate><creator>Çallı, Erdi</creator><creator>Murphy, Keelin</creator><creator>Kurstjens, Steef</creator><creator>Samson, Tijs</creator><creator>Herpers, Robert</creator><creator>Smits, Henk</creator><creator>Rutten, Matthieu</creator><creator>van Ginneken, Bram</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3962-7276</orcidid><orcidid>https://orcid.org/0000-0003-2028-8972</orcidid></search><sort><creationdate>20210730</creationdate><title>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</title><author>Çallı, Erdi ; Murphy, Keelin ; Kurstjens, Steef ; Samson, Tijs ; Herpers, Robert ; Smits, Henk ; Rutten, Matthieu ; van Ginneken, Bram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-8f763ce69cbb0f1a38aeb3335e4b87570fd6dcd8ec130cee5ec09b49c0d016823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Ablation</topic><topic>Biology and Life Sciences</topic><topic>Cardiovascular disease</topic><topic>Chest</topic><topic>Computer and Information Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 Nucleic Acid Testing</topic><topic>Databases, Factual</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Experiments</topic><topic>Health aspects</topic><topic>Hematology</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Laboratory tests</topic><topic>Machine learning</topic><topic>Management</topic><topic>Mathematical models</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Missing data</topic><topic>Missing observations (Statistics)</topic><topic>Model testing</topic><topic>Models, Theoretical</topic><topic>Mortality</topic><topic>Neural networks</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Performance evaluation</topic><topic>Polymerase chain reaction</topic><topic>Random Allocation</topic><topic>Research and Analysis Methods</topic><topic>Robustness</topic><topic>SARS-CoV-2</topic><topic>Statistical analysis</topic><topic>Testing time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Çallı, Erdi</creatorcontrib><creatorcontrib>Murphy, Keelin</creatorcontrib><creatorcontrib>Kurstjens, Steef</creatorcontrib><creatorcontrib>Samson, Tijs</creatorcontrib><creatorcontrib>Herpers, Robert</creatorcontrib><creatorcontrib>Smits, Henk</creatorcontrib><creatorcontrib>Rutten, Matthieu</creatorcontrib><creatorcontrib>van Ginneken, Bram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çallı, Erdi</au><au>Murphy, Keelin</au><au>Kurstjens, Steef</au><au>Samson, Tijs</au><au>Herpers, Robert</au><au>Smits, Henk</au><au>Rutten, Matthieu</au><au>van Ginneken, Bram</au><au>Stoean, Ruxandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning with robustness to missing data: A novel approach to the detection of COVID-19</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-07-30</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0255301</spage><epage>e0255301</epage><pages>e0255301-e0255301</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the context of the current global pandemic and the limitations of the RT-PCR test, we propose a novel deep learning architecture, DFCN (Denoising Fully Connected Network). Since medical facilities around the world differ enormously in what laboratory tests or chest imaging may be available, DFCN is designed to be robust to missing input data. An ablation study extensively evaluates the performance benefits of the DFCN as well as its robustness to missing inputs. Data from 1088 patients with confirmed RT-PCR results are obtained from two independent medical facilities. The data includes results from 27 laboratory tests and a chest x-ray scored by a deep learning model. Training and test datasets are taken from different medical facilities. Data is made publicly available. The performance of DFCN in predicting the RT-PCR result is compared with 3 related architectures as well as a Random Forest baseline. All models are trained with varying levels of masked input data to encourage robustness to missing inputs. Missing data is simulated at test time by masking inputs randomly. DFCN outperforms all other models with statistical significance using random subsets of input data with 2-27 available inputs. When all 28 inputs are available DFCN obtains an AUC of 0.924, higher than any other model. Furthermore, with clinically meaningful subsets of parameters consisting of just 6 and 7 inputs respectively, DFCN achieves higher AUCs than any other model, with values of 0.909 and 0.919.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34329354</pmid><doi>10.1371/journal.pone.0255301</doi><tpages>e0255301</tpages><orcidid>https://orcid.org/0000-0003-3962-7276</orcidid><orcidid>https://orcid.org/0000-0003-2028-8972</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-07, Vol.16 (7), p.e0255301-e0255301 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2556835022 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Ablation Biology and Life Sciences Cardiovascular disease Chest Computer and Information Sciences Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 Nucleic Acid Testing Databases, Factual Datasets Deep Learning Experiments Health aspects Hematology Hospitals Humans Laboratories Laboratory tests Machine learning Management Mathematical models Medical research Medicine and Health Sciences Missing data Missing observations (Statistics) Model testing Models, Theoretical Mortality Neural networks Pandemics Patients Performance evaluation Polymerase chain reaction Random Allocation Research and Analysis Methods Robustness SARS-CoV-2 Statistical analysis Testing time |
title | Deep learning with robustness to missing data: A novel approach to the detection of COVID-19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A03%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20with%20robustness%20to%20missing%20data:%20A%20novel%20approach%20to%20the%20detection%20of%20COVID-19&rft.jtitle=PloS%20one&rft.au=%C3%87all%C4%B1,%20Erdi&rft.date=2021-07-30&rft.volume=16&rft.issue=7&rft.spage=e0255301&rft.epage=e0255301&rft.pages=e0255301-e0255301&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0255301&rft_dat=%3Cgale_plos_%3EA670178720%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2556835022&rft_id=info:pmid/34329354&rft_galeid=A670178720&rft_doaj_id=oai_doaj_org_article_681712fb93014f339233ea04a30952d3&rfr_iscdi=true |