Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches
Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported p...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-06, Vol.17 (6), p.e1008994-e1008994 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008994 |
---|---|
container_issue | 6 |
container_start_page | e1008994 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Lu, Fred S Nguyen, Andre T Link, Nicholas B Molina, Mathieu Davis, Jessica T Chinazzi, Matteo Xiong, Xinyue Vespignani, Alessandro Lipsitch, Marc Santillana, Mauricio |
description | Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems. |
doi_str_mv | 10.1371/journal.pcbi.1008994 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2552289833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667304382</galeid><doaj_id>oai_doaj_org_article_e91b0950e805458ca2ea8fa83f9b4cc5</doaj_id><sourcerecordid>A667304382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-de780e5fe6b51289c364c289cb40cb62b5ffcbd331ae5ee64f56b2520fe65cf73</originalsourceid><addsrcrecordid>eNqVk8Fu1DAQhiMEoqXwBkhY4gJSd7FjO3E4IFVLCytVVKKUq-U4k6yrJA62s2J5IV4TpxsQi3pBOdgef_8_nokmSZ4TvCQ0J29u7eh61S4HXZolwVgUBXuQHBPO6SKnXDz8a3-UPPH-FuO4LbLHyRFlhArB-HHy89wH06lg-gaFDSA9dmMbj1tAptemgl4DsjVaXX1dv1-QIkbvuJveBKjQdVABPBr9pDd93Y7Q_1DIj24Lpm1VVJ-irXG2tY3RKLJTplOk-gp11gXVmrBDlQrqLbqIBSFtu6GFDvqg3A6pYXBW6Q34p8mjWrUens3rSXJzcf5l9XFxefVhvTq7XOiMirCoIBcYeA1ZyUkqCk0zpqe1ZFiXWVryutZlRSlRwAEyVvOsTHmKo4LrOqcnyYu979BaL-cee5lynkYbQWkk1nuisupWDi52z-2kVUbeBaxrpHLB6BYkFKTEBccgMGdcaJWCErUStC5KpjWPXu_mbGPZQaVj2U61B6aHN73ZyMZupUgZwRmJBq9mA2e_jbG7sjNew9R5sOP0bkYZEzmd0Jf_oPdXN1ONigXEP2pjXj2ZyrMsyylmVKSRWt5Dxa-CzmjbQ21i_EDw-kAQmQDfQ6NG7-X6-vN_sJ8OWbZntbPeO6j_9I5gOY3J7yLlNCZyHhP6Cwl3B4s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552289833</pqid></control><display><type>article</type><title>Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Lu, Fred S ; Nguyen, Andre T ; Link, Nicholas B ; Molina, Mathieu ; Davis, Jessica T ; Chinazzi, Matteo ; Xiong, Xinyue ; Vespignani, Alessandro ; Lipsitch, Marc ; Santillana, Mauricio</creator><contributor>Viboud, Cecile</contributor><creatorcontrib>Lu, Fred S ; Nguyen, Andre T ; Link, Nicholas B ; Molina, Mathieu ; Davis, Jessica T ; Chinazzi, Matteo ; Xiong, Xinyue ; Vespignani, Alessandro ; Lipsitch, Marc ; Santillana, Mauricio ; Viboud, Cecile</creatorcontrib><description>Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008994</identifier><identifier>PMID: 34138845</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biology and Life Sciences ; Coronaviruses ; COVID-19 ; Distribution ; Epidemic models ; Epidemics ; Estimates ; Fatalities ; Influenza ; Medicine and Health Sciences ; Methods ; Mortality ; Pandemics ; People and places ; Public health ; Sentinel health events ; Statistical tests ; Surveillance ; Surveillance systems ; United States ; Viral diseases</subject><ispartof>PLoS computational biology, 2021-06, Vol.17 (6), p.e1008994-e1008994</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-de780e5fe6b51289c364c289cb40cb62b5ffcbd331ae5ee64f56b2520fe65cf73</citedby><cites>FETCH-LOGICAL-c638t-de780e5fe6b51289c364c289cb40cb62b5ffcbd331ae5ee64f56b2520fe65cf73</cites><orcidid>0000-0003-1026-5734 ; 0000-0003-4078-4842 ; 0000-0003-0726-1855 ; 0000-0002-5955-1929 ; 0000-0003-3419-4205 ; 0000-0001-7131-6879 ; 0000-0003-1504-9213</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241061/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8241061/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids></links><search><contributor>Viboud, Cecile</contributor><creatorcontrib>Lu, Fred S</creatorcontrib><creatorcontrib>Nguyen, Andre T</creatorcontrib><creatorcontrib>Link, Nicholas B</creatorcontrib><creatorcontrib>Molina, Mathieu</creatorcontrib><creatorcontrib>Davis, Jessica T</creatorcontrib><creatorcontrib>Chinazzi, Matteo</creatorcontrib><creatorcontrib>Xiong, Xinyue</creatorcontrib><creatorcontrib>Vespignani, Alessandro</creatorcontrib><creatorcontrib>Lipsitch, Marc</creatorcontrib><creatorcontrib>Santillana, Mauricio</creatorcontrib><title>Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches</title><title>PLoS computational biology</title><description>Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems.</description><subject>Biology and Life Sciences</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Distribution</subject><subject>Epidemic models</subject><subject>Epidemics</subject><subject>Estimates</subject><subject>Fatalities</subject><subject>Influenza</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mortality</subject><subject>Pandemics</subject><subject>People and places</subject><subject>Public health</subject><subject>Sentinel health events</subject><subject>Statistical tests</subject><subject>Surveillance</subject><subject>Surveillance systems</subject><subject>United States</subject><subject>Viral diseases</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk8Fu1DAQhiMEoqXwBkhY4gJSd7FjO3E4IFVLCytVVKKUq-U4k6yrJA62s2J5IV4TpxsQi3pBOdgef_8_nokmSZ4TvCQ0J29u7eh61S4HXZolwVgUBXuQHBPO6SKnXDz8a3-UPPH-FuO4LbLHyRFlhArB-HHy89wH06lg-gaFDSA9dmMbj1tAptemgl4DsjVaXX1dv1-QIkbvuJveBKjQdVABPBr9pDd93Y7Q_1DIj24Lpm1VVJ-irXG2tY3RKLJTplOk-gp11gXVmrBDlQrqLbqIBSFtu6GFDvqg3A6pYXBW6Q34p8mjWrUens3rSXJzcf5l9XFxefVhvTq7XOiMirCoIBcYeA1ZyUkqCk0zpqe1ZFiXWVryutZlRSlRwAEyVvOsTHmKo4LrOqcnyYu979BaL-cee5lynkYbQWkk1nuisupWDi52z-2kVUbeBaxrpHLB6BYkFKTEBccgMGdcaJWCErUStC5KpjWPXu_mbGPZQaVj2U61B6aHN73ZyMZupUgZwRmJBq9mA2e_jbG7sjNew9R5sOP0bkYZEzmd0Jf_oPdXN1ONigXEP2pjXj2ZyrMsyylmVKSRWt5Dxa-CzmjbQ21i_EDw-kAQmQDfQ6NG7-X6-vN_sJ8OWbZntbPeO6j_9I5gOY3J7yLlNCZyHhP6Cwl3B4s</recordid><startdate>20210617</startdate><enddate>20210617</enddate><creator>Lu, Fred S</creator><creator>Nguyen, Andre T</creator><creator>Link, Nicholas B</creator><creator>Molina, Mathieu</creator><creator>Davis, Jessica T</creator><creator>Chinazzi, Matteo</creator><creator>Xiong, Xinyue</creator><creator>Vespignani, Alessandro</creator><creator>Lipsitch, Marc</creator><creator>Santillana, Mauricio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1026-5734</orcidid><orcidid>https://orcid.org/0000-0003-4078-4842</orcidid><orcidid>https://orcid.org/0000-0003-0726-1855</orcidid><orcidid>https://orcid.org/0000-0002-5955-1929</orcidid><orcidid>https://orcid.org/0000-0003-3419-4205</orcidid><orcidid>https://orcid.org/0000-0001-7131-6879</orcidid><orcidid>https://orcid.org/0000-0003-1504-9213</orcidid></search><sort><creationdate>20210617</creationdate><title>Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches</title><author>Lu, Fred S ; Nguyen, Andre T ; Link, Nicholas B ; Molina, Mathieu ; Davis, Jessica T ; Chinazzi, Matteo ; Xiong, Xinyue ; Vespignani, Alessandro ; Lipsitch, Marc ; Santillana, Mauricio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-de780e5fe6b51289c364c289cb40cb62b5ffcbd331ae5ee64f56b2520fe65cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Distribution</topic><topic>Epidemic models</topic><topic>Epidemics</topic><topic>Estimates</topic><topic>Fatalities</topic><topic>Influenza</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mortality</topic><topic>Pandemics</topic><topic>People and places</topic><topic>Public health</topic><topic>Sentinel health events</topic><topic>Statistical tests</topic><topic>Surveillance</topic><topic>Surveillance systems</topic><topic>United States</topic><topic>Viral diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Fred S</creatorcontrib><creatorcontrib>Nguyen, Andre T</creatorcontrib><creatorcontrib>Link, Nicholas B</creatorcontrib><creatorcontrib>Molina, Mathieu</creatorcontrib><creatorcontrib>Davis, Jessica T</creatorcontrib><creatorcontrib>Chinazzi, Matteo</creatorcontrib><creatorcontrib>Xiong, Xinyue</creatorcontrib><creatorcontrib>Vespignani, Alessandro</creatorcontrib><creatorcontrib>Lipsitch, Marc</creatorcontrib><creatorcontrib>Santillana, Mauricio</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Fred S</au><au>Nguyen, Andre T</au><au>Link, Nicholas B</au><au>Molina, Mathieu</au><au>Davis, Jessica T</au><au>Chinazzi, Matteo</au><au>Xiong, Xinyue</au><au>Vespignani, Alessandro</au><au>Lipsitch, Marc</au><au>Santillana, Mauricio</au><au>Viboud, Cecile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches</atitle><jtitle>PLoS computational biology</jtitle><date>2021-06-17</date><risdate>2021</risdate><volume>17</volume><issue>6</issue><spage>e1008994</spage><epage>e1008994</epage><pages>e1008994-e1008994</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Effectively designing and evaluating public health responses to the ongoing COVID-19 pandemic requires accurate estimation of the prevalence of COVID-19 across the United States (US). Equipment shortages and varying testing capabilities have however hindered the usefulness of the official reported positive COVID-19 case counts. We introduce four complementary approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in the US as well as Puerto Rico and the District of Columbia, using a combination of excess influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spatially structured epidemic model. Instead of relying on the estimate from a single data source or method that may be biased, we provide multiple estimates, each relying on different assumptions and data sources. Across our four approaches emerges the consistent conclusion that on April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as of April 4 have a likely range of 2.3 to 4.8 million, with possibly as many as 7.6 million cases, up to 25 times greater than the cumulative confirmed cases of about 311,000. Extending our methods to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 4.9 to 10.1 million, as opposed to 1.5 million positive test counts. The proposed combination of approaches may prove useful in assessing the burden of COVID-19 during resurgences in the US and other countries with comparable surveillance systems.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34138845</pmid><doi>10.1371/journal.pcbi.1008994</doi><orcidid>https://orcid.org/0000-0003-1026-5734</orcidid><orcidid>https://orcid.org/0000-0003-4078-4842</orcidid><orcidid>https://orcid.org/0000-0003-0726-1855</orcidid><orcidid>https://orcid.org/0000-0002-5955-1929</orcidid><orcidid>https://orcid.org/0000-0003-3419-4205</orcidid><orcidid>https://orcid.org/0000-0001-7131-6879</orcidid><orcidid>https://orcid.org/0000-0003-1504-9213</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-06, Vol.17 (6), p.e1008994-e1008994 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2552289833 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Biology and Life Sciences Coronaviruses COVID-19 Distribution Epidemic models Epidemics Estimates Fatalities Influenza Medicine and Health Sciences Methods Mortality Pandemics People and places Public health Sentinel health events Statistical tests Surveillance Surveillance systems United States Viral diseases |
title | Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20cumulative%20incidence%20of%20COVID-19%20in%20the%20United%20States%20using%20influenza%20surveillance,%20virologic%20testing,%20and%20mortality%20data:%20Four%20complementary%20approaches&rft.jtitle=PLoS%20computational%20biology&rft.au=Lu,%20Fred%20S&rft.date=2021-06-17&rft.volume=17&rft.issue=6&rft.spage=e1008994&rft.epage=e1008994&rft.pages=e1008994-e1008994&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008994&rft_dat=%3Cgale_plos_%3EA667304382%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552289833&rft_id=info:pmid/34138845&rft_galeid=A667304382&rft_doaj_id=oai_doaj_org_article_e91b0950e805458ca2ea8fa83f9b4cc5&rfr_iscdi=true |