Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision
Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and tria...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-06, Vol.17 (6), p.e1009047-e1009047 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009047 |
---|---|
container_issue | 6 |
container_start_page | e1009047 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Berret, Bastien Conessa, Adrien Schweighofer, Nicolas Burdet, Etienne |
description | Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate. |
doi_str_mv | 10.1371/journal.pcbi.1009047 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2552289810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667303687</galeid><doaj_id>oai_doaj_org_article_b5c75019a5de4b56ba712127904ea876</doaj_id><sourcerecordid>A667303687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwD5CwxM120WLHsZ3cIFUTsEoVSGz3lj9blyQuttPRf4-zBkSn3SBf-OjkOe_JeeVTFG8RnCPM0IetH0Iv2vlOSTdHEDawYs-Kc0QInjFM6uf_xGfFqxi3EOawoS-LM1whRBhh58XhNnm1ETE5BfwuuU60wBqjrQ_3IujZGEuhfgDl-xR8C7RJJnSuNxFk2vVrIHoN9iI4IV3r0gF4C0ToQOf3pjN9iuDepQ3w4eH2QwJ7F53vXxcvrGijeTPdF8Xd50931zez1bcvy-vFaqYoK9NMSUOosFYxLImViGLIKmoUVVpAXQpooUH56BJLaam2lla6oQpVpq4txRfFu6PsrvWRT6ZFXhJSlnVTI5iJ5ZHQXmz5LmQPwoF74fhDwoc1FyH70xouiWIEokYQbSpJqBQMlahk2XsjajZ2-zh1G2RntMrzB9GeiJ5-6d2Gr_2e12WJWIOzwNVRYPOo7Gax4mMOYoobWLI9yuzl1Cz4n4OJiXcuKtO2ojd-GGesICkrRJuMvn-EPu3ERK1FHtb11ud_VKMoX1DKcO5ds0zNn6Dy0aZz-ZkY63L-pODqpGB8SuZXWoshRr68_f4f7NdTtjqyKvgYg7F_DUOQjzvyZ0g-7gifdgT_Bh3NBWs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552289810</pqid></control><display><type>article</type><title>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Berret, Bastien ; Conessa, Adrien ; Schweighofer, Nicolas ; Burdet, Etienne</creator><contributor>Beierholm, Ulrik R.</contributor><creatorcontrib>Berret, Bastien ; Conessa, Adrien ; Schweighofer, Nicolas ; Burdet, Etienne ; Beierholm, Ulrik R.</creatorcontrib><description>Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009047</identifier><identifier>PMID: 34115757</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Approximation ; Arm ; Biology and Life Sciences ; Central nervous system ; Cognitive science ; Computer applications ; Control systems ; Control theory ; Costs ; Engineering and Technology ; Feedback ; Feedback control ; Feedforward control ; Human mechanics ; Human motion ; Mathematical models ; Medicine and Health Sciences ; Model testing ; Neuroscience ; Noise ; Noise generation ; Noise prediction ; Optimization ; Perceptual-motor processes ; Physical Sciences ; Physiological research ; Planning ; Psychological research ; Research and Analysis Methods ; Sensorimotor system ; Simulation ; Social Sciences ; Stochasticity ; Variability ; Vision ; Visual perception</subject><ispartof>PLoS computational biology, 2021-06, Vol.17 (6), p.e1009047-e1009047</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Berret et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Berret et al 2021 Berret et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</citedby><cites>FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</cites><orcidid>0000-0002-6236-1958 ; 0000-0002-0779-7724 ; 0000-0003-3362-6088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03639027$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Beierholm, Ulrik R.</contributor><creatorcontrib>Berret, Bastien</creatorcontrib><creatorcontrib>Conessa, Adrien</creatorcontrib><creatorcontrib>Schweighofer, Nicolas</creatorcontrib><creatorcontrib>Burdet, Etienne</creatorcontrib><title>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</title><title>PLoS computational biology</title><description>Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.</description><subject>Approximation</subject><subject>Arm</subject><subject>Biology and Life Sciences</subject><subject>Central nervous system</subject><subject>Cognitive science</subject><subject>Computer applications</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Costs</subject><subject>Engineering and Technology</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Human mechanics</subject><subject>Human motion</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Model testing</subject><subject>Neuroscience</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Noise prediction</subject><subject>Optimization</subject><subject>Perceptual-motor processes</subject><subject>Physical Sciences</subject><subject>Physiological research</subject><subject>Planning</subject><subject>Psychological research</subject><subject>Research and Analysis Methods</subject><subject>Sensorimotor system</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Stochasticity</subject><subject>Variability</subject><subject>Vision</subject><subject>Visual perception</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwD5CwxM120WLHsZ3cIFUTsEoVSGz3lj9blyQuttPRf4-zBkSn3SBf-OjkOe_JeeVTFG8RnCPM0IetH0Iv2vlOSTdHEDawYs-Kc0QInjFM6uf_xGfFqxi3EOawoS-LM1whRBhh58XhNnm1ETE5BfwuuU60wBqjrQ_3IujZGEuhfgDl-xR8C7RJJnSuNxFk2vVrIHoN9iI4IV3r0gF4C0ToQOf3pjN9iuDepQ3w4eH2QwJ7F53vXxcvrGijeTPdF8Xd50931zez1bcvy-vFaqYoK9NMSUOosFYxLImViGLIKmoUVVpAXQpooUH56BJLaam2lla6oQpVpq4txRfFu6PsrvWRT6ZFXhJSlnVTI5iJ5ZHQXmz5LmQPwoF74fhDwoc1FyH70xouiWIEokYQbSpJqBQMlahk2XsjajZ2-zh1G2RntMrzB9GeiJ5-6d2Gr_2e12WJWIOzwNVRYPOo7Gax4mMOYoobWLI9yuzl1Cz4n4OJiXcuKtO2ojd-GGesICkrRJuMvn-EPu3ERK1FHtb11ud_VKMoX1DKcO5ds0zNn6Dy0aZz-ZkY63L-pODqpGB8SuZXWoshRr68_f4f7NdTtjqyKvgYg7F_DUOQjzvyZ0g-7gifdgT_Bh3NBWs</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Berret, Bastien</creator><creator>Conessa, Adrien</creator><creator>Schweighofer, Nicolas</creator><creator>Burdet, Etienne</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6236-1958</orcidid><orcidid>https://orcid.org/0000-0002-0779-7724</orcidid><orcidid>https://orcid.org/0000-0003-3362-6088</orcidid></search><sort><creationdate>20210611</creationdate><title>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</title><author>Berret, Bastien ; Conessa, Adrien ; Schweighofer, Nicolas ; Burdet, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Arm</topic><topic>Biology and Life Sciences</topic><topic>Central nervous system</topic><topic>Cognitive science</topic><topic>Computer applications</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Costs</topic><topic>Engineering and Technology</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Human mechanics</topic><topic>Human motion</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Model testing</topic><topic>Neuroscience</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Noise prediction</topic><topic>Optimization</topic><topic>Perceptual-motor processes</topic><topic>Physical Sciences</topic><topic>Physiological research</topic><topic>Planning</topic><topic>Psychological research</topic><topic>Research and Analysis Methods</topic><topic>Sensorimotor system</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Stochasticity</topic><topic>Variability</topic><topic>Vision</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berret, Bastien</creatorcontrib><creatorcontrib>Conessa, Adrien</creatorcontrib><creatorcontrib>Schweighofer, Nicolas</creatorcontrib><creatorcontrib>Burdet, Etienne</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berret, Bastien</au><au>Conessa, Adrien</au><au>Schweighofer, Nicolas</au><au>Burdet, Etienne</au><au>Beierholm, Ulrik R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</atitle><jtitle>PLoS computational biology</jtitle><date>2021-06-11</date><risdate>2021</risdate><volume>17</volume><issue>6</issue><spage>e1009047</spage><epage>e1009047</epage><pages>e1009047-e1009047</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34115757</pmid><doi>10.1371/journal.pcbi.1009047</doi><orcidid>https://orcid.org/0000-0002-6236-1958</orcidid><orcidid>https://orcid.org/0000-0002-0779-7724</orcidid><orcidid>https://orcid.org/0000-0003-3362-6088</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-06, Vol.17 (6), p.e1009047-e1009047 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2552289810 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Approximation Arm Biology and Life Sciences Central nervous system Cognitive science Computer applications Control systems Control theory Costs Engineering and Technology Feedback Feedback control Feedforward control Human mechanics Human motion Mathematical models Medicine and Health Sciences Model testing Neuroscience Noise Noise generation Noise prediction Optimization Perceptual-motor processes Physical Sciences Physiological research Planning Psychological research Research and Analysis Methods Sensorimotor system Simulation Social Sciences Stochasticity Variability Vision Visual perception |
title | Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20optimal%20feedforward-feedback%20control%20determines%20timing%20and%20variability%20of%20arm%20movements%20with%20or%20without%20vision&rft.jtitle=PLoS%20computational%20biology&rft.au=Berret,%20Bastien&rft.date=2021-06-11&rft.volume=17&rft.issue=6&rft.spage=e1009047&rft.epage=e1009047&rft.pages=e1009047-e1009047&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009047&rft_dat=%3Cgale_plos_%3EA667303687%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552289810&rft_id=info:pmid/34115757&rft_galeid=A667303687&rft_doaj_id=oai_doaj_org_article_b5c75019a5de4b56ba712127904ea876&rfr_iscdi=true |