Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision

Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and tria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-06, Vol.17 (6), p.e1009047-e1009047
Hauptverfasser: Berret, Bastien, Conessa, Adrien, Schweighofer, Nicolas, Burdet, Etienne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009047
container_issue 6
container_start_page e1009047
container_title PLoS computational biology
container_volume 17
creator Berret, Bastien
Conessa, Adrien
Schweighofer, Nicolas
Burdet, Etienne
description Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.
doi_str_mv 10.1371/journal.pcbi.1009047
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2552289810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667303687</galeid><doaj_id>oai_doaj_org_article_b5c75019a5de4b56ba712127904ea876</doaj_id><sourcerecordid>A667303687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</originalsourceid><addsrcrecordid>eNqVk11v0zAUhiMEYmPwD5CwxM120WLHsZ3cIFUTsEoVSGz3lj9blyQuttPRf4-zBkSn3SBf-OjkOe_JeeVTFG8RnCPM0IetH0Iv2vlOSTdHEDawYs-Kc0QInjFM6uf_xGfFqxi3EOawoS-LM1whRBhh58XhNnm1ETE5BfwuuU60wBqjrQ_3IujZGEuhfgDl-xR8C7RJJnSuNxFk2vVrIHoN9iI4IV3r0gF4C0ToQOf3pjN9iuDepQ3w4eH2QwJ7F53vXxcvrGijeTPdF8Xd50931zez1bcvy-vFaqYoK9NMSUOosFYxLImViGLIKmoUVVpAXQpooUH56BJLaam2lla6oQpVpq4txRfFu6PsrvWRT6ZFXhJSlnVTI5iJ5ZHQXmz5LmQPwoF74fhDwoc1FyH70xouiWIEokYQbSpJqBQMlahk2XsjajZ2-zh1G2RntMrzB9GeiJ5-6d2Gr_2e12WJWIOzwNVRYPOo7Gax4mMOYoobWLI9yuzl1Cz4n4OJiXcuKtO2ojd-GGesICkrRJuMvn-EPu3ERK1FHtb11ud_VKMoX1DKcO5ds0zNn6Dy0aZz-ZkY63L-pODqpGB8SuZXWoshRr68_f4f7NdTtjqyKvgYg7F_DUOQjzvyZ0g-7gifdgT_Bh3NBWs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552289810</pqid></control><display><type>article</type><title>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Berret, Bastien ; Conessa, Adrien ; Schweighofer, Nicolas ; Burdet, Etienne</creator><contributor>Beierholm, Ulrik R.</contributor><creatorcontrib>Berret, Bastien ; Conessa, Adrien ; Schweighofer, Nicolas ; Burdet, Etienne ; Beierholm, Ulrik R.</creatorcontrib><description>Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009047</identifier><identifier>PMID: 34115757</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Approximation ; Arm ; Biology and Life Sciences ; Central nervous system ; Cognitive science ; Computer applications ; Control systems ; Control theory ; Costs ; Engineering and Technology ; Feedback ; Feedback control ; Feedforward control ; Human mechanics ; Human motion ; Mathematical models ; Medicine and Health Sciences ; Model testing ; Neuroscience ; Noise ; Noise generation ; Noise prediction ; Optimization ; Perceptual-motor processes ; Physical Sciences ; Physiological research ; Planning ; Psychological research ; Research and Analysis Methods ; Sensorimotor system ; Simulation ; Social Sciences ; Stochasticity ; Variability ; Vision ; Visual perception</subject><ispartof>PLoS computational biology, 2021-06, Vol.17 (6), p.e1009047-e1009047</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Berret et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Berret et al 2021 Berret et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</citedby><cites>FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</cites><orcidid>0000-0002-6236-1958 ; 0000-0002-0779-7724 ; 0000-0003-3362-6088</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221793/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8221793/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03639027$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Beierholm, Ulrik R.</contributor><creatorcontrib>Berret, Bastien</creatorcontrib><creatorcontrib>Conessa, Adrien</creatorcontrib><creatorcontrib>Schweighofer, Nicolas</creatorcontrib><creatorcontrib>Burdet, Etienne</creatorcontrib><title>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</title><title>PLoS computational biology</title><description>Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.</description><subject>Approximation</subject><subject>Arm</subject><subject>Biology and Life Sciences</subject><subject>Central nervous system</subject><subject>Cognitive science</subject><subject>Computer applications</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Costs</subject><subject>Engineering and Technology</subject><subject>Feedback</subject><subject>Feedback control</subject><subject>Feedforward control</subject><subject>Human mechanics</subject><subject>Human motion</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Model testing</subject><subject>Neuroscience</subject><subject>Noise</subject><subject>Noise generation</subject><subject>Noise prediction</subject><subject>Optimization</subject><subject>Perceptual-motor processes</subject><subject>Physical Sciences</subject><subject>Physiological research</subject><subject>Planning</subject><subject>Psychological research</subject><subject>Research and Analysis Methods</subject><subject>Sensorimotor system</subject><subject>Simulation</subject><subject>Social Sciences</subject><subject>Stochasticity</subject><subject>Variability</subject><subject>Vision</subject><subject>Visual perception</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11v0zAUhiMEYmPwD5CwxM120WLHsZ3cIFUTsEoVSGz3lj9blyQuttPRf4-zBkSn3SBf-OjkOe_JeeVTFG8RnCPM0IetH0Iv2vlOSTdHEDawYs-Kc0QInjFM6uf_xGfFqxi3EOawoS-LM1whRBhh58XhNnm1ETE5BfwuuU60wBqjrQ_3IujZGEuhfgDl-xR8C7RJJnSuNxFk2vVrIHoN9iI4IV3r0gF4C0ToQOf3pjN9iuDepQ3w4eH2QwJ7F53vXxcvrGijeTPdF8Xd50931zez1bcvy-vFaqYoK9NMSUOosFYxLImViGLIKmoUVVpAXQpooUH56BJLaam2lla6oQpVpq4txRfFu6PsrvWRT6ZFXhJSlnVTI5iJ5ZHQXmz5LmQPwoF74fhDwoc1FyH70xouiWIEokYQbSpJqBQMlahk2XsjajZ2-zh1G2RntMrzB9GeiJ5-6d2Gr_2e12WJWIOzwNVRYPOo7Gax4mMOYoobWLI9yuzl1Cz4n4OJiXcuKtO2ojd-GGesICkrRJuMvn-EPu3ERK1FHtb11ud_VKMoX1DKcO5ds0zNn6Dy0aZz-ZkY63L-pODqpGB8SuZXWoshRr68_f4f7NdTtjqyKvgYg7F_DUOQjzvyZ0g-7gifdgT_Bh3NBWs</recordid><startdate>20210611</startdate><enddate>20210611</enddate><creator>Berret, Bastien</creator><creator>Conessa, Adrien</creator><creator>Schweighofer, Nicolas</creator><creator>Burdet, Etienne</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6236-1958</orcidid><orcidid>https://orcid.org/0000-0002-0779-7724</orcidid><orcidid>https://orcid.org/0000-0003-3362-6088</orcidid></search><sort><creationdate>20210611</creationdate><title>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</title><author>Berret, Bastien ; Conessa, Adrien ; Schweighofer, Nicolas ; Burdet, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c672t-cbe56affc73b5fb1630746ec6cda0d2a0f0e1e1ed23bbf6dff64d96c14e88f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Arm</topic><topic>Biology and Life Sciences</topic><topic>Central nervous system</topic><topic>Cognitive science</topic><topic>Computer applications</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Costs</topic><topic>Engineering and Technology</topic><topic>Feedback</topic><topic>Feedback control</topic><topic>Feedforward control</topic><topic>Human mechanics</topic><topic>Human motion</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Model testing</topic><topic>Neuroscience</topic><topic>Noise</topic><topic>Noise generation</topic><topic>Noise prediction</topic><topic>Optimization</topic><topic>Perceptual-motor processes</topic><topic>Physical Sciences</topic><topic>Physiological research</topic><topic>Planning</topic><topic>Psychological research</topic><topic>Research and Analysis Methods</topic><topic>Sensorimotor system</topic><topic>Simulation</topic><topic>Social Sciences</topic><topic>Stochasticity</topic><topic>Variability</topic><topic>Vision</topic><topic>Visual perception</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berret, Bastien</creatorcontrib><creatorcontrib>Conessa, Adrien</creatorcontrib><creatorcontrib>Schweighofer, Nicolas</creatorcontrib><creatorcontrib>Burdet, Etienne</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berret, Bastien</au><au>Conessa, Adrien</au><au>Schweighofer, Nicolas</au><au>Burdet, Etienne</au><au>Beierholm, Ulrik R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision</atitle><jtitle>PLoS computational biology</jtitle><date>2021-06-11</date><risdate>2021</risdate><volume>17</volume><issue>6</issue><spage>e1009047</spage><epage>e1009047</epage><pages>e1009047-e1009047</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Human movements with or without vision exhibit timing (i.e. speed and duration) and variability characteristics which are not well captured by existing computational models. Here, we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can predict the nominal timing and trial-by-trial variability of self-paced arm reaching movements carried out with or without online visual feedback of the hand. In SFFC, movement timing results from the minimization of the intrinsic factors of effort and variance due to constant and signal-dependent motor noise, and movement variability depends on the integration of visual feedback. Reaching arm movements data are used to examine the effect of online vision on movement timing and variability, and test the model. This modelling suggests that the central nervous system predicts the effects of sensorimotor noise to generate an optimal feedforward motor command, and triggers optimal feedback corrections to task-related errors based on the available limb state estimate.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34115757</pmid><doi>10.1371/journal.pcbi.1009047</doi><orcidid>https://orcid.org/0000-0002-6236-1958</orcidid><orcidid>https://orcid.org/0000-0002-0779-7724</orcidid><orcidid>https://orcid.org/0000-0003-3362-6088</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-06, Vol.17 (6), p.e1009047-e1009047
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2552289810
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Approximation
Arm
Biology and Life Sciences
Central nervous system
Cognitive science
Computer applications
Control systems
Control theory
Costs
Engineering and Technology
Feedback
Feedback control
Feedforward control
Human mechanics
Human motion
Mathematical models
Medicine and Health Sciences
Model testing
Neuroscience
Noise
Noise generation
Noise prediction
Optimization
Perceptual-motor processes
Physical Sciences
Physiological research
Planning
Psychological research
Research and Analysis Methods
Sensorimotor system
Simulation
Social Sciences
Stochasticity
Variability
Vision
Visual perception
title Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20optimal%20feedforward-feedback%20control%20determines%20timing%20and%20variability%20of%20arm%20movements%20with%20or%20without%20vision&rft.jtitle=PLoS%20computational%20biology&rft.au=Berret,%20Bastien&rft.date=2021-06-11&rft.volume=17&rft.issue=6&rft.spage=e1009047&rft.epage=e1009047&rft.pages=e1009047-e1009047&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009047&rft_dat=%3Cgale_plos_%3EA667303687%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552289810&rft_id=info:pmid/34115757&rft_galeid=A667303687&rft_doaj_id=oai_doaj_org_article_b5c75019a5de4b56ba712127904ea876&rfr_iscdi=true