Behavioral correlates of cortical semantic representations modeled by word vectors

The quantitative modeling of semantic representations in the brain plays a key role in understanding the neural basis of semantic processing. Previous studies have demonstrated that word vectors, which were originally developed for use in the field of natural language processing, provide a powerful...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-06, Vol.17 (6), p.e1009138-e1009138
Hauptverfasser: Nishida, Satoshi, Blanc, Antoine, Maeda, Naoya, Kado, Masataka, Nishimoto, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009138
container_issue 6
container_start_page e1009138
container_title PLoS computational biology
container_volume 17
creator Nishida, Satoshi
Blanc, Antoine
Maeda, Naoya
Kado, Masataka
Nishimoto, Shinji
description The quantitative modeling of semantic representations in the brain plays a key role in understanding the neural basis of semantic processing. Previous studies have demonstrated that word vectors, which were originally developed for use in the field of natural language processing, provide a powerful tool for such quantitative modeling. However, whether semantic representations in the brain revealed by the word vector-based models actually capture our perception of semantic information remains unclear, as there has been no study explicitly examining the behavioral correlates of the modeled brain semantic representations. To address this issue, we compared the semantic structure of nouns and adjectives in the brain estimated from word vector-based brain models with that evaluated from human behavior. The brain models were constructed using voxelwise modeling to predict the functional magnetic resonance imaging (fMRI) response to natural movies from semantic contents in each movie scene through a word vector space. The semantic dissimilarity of brain word representations was then evaluated using the brain models. Meanwhile, data on human behavior reflecting the perception of semantic dissimilarity between words were collected in psychological experiments. We found a significant correlation between brain model- and behavior-derived semantic dissimilarities of words. This finding suggests that semantic representations in the brain modeled via word vectors appropriately capture our perception of word meanings.
doi_str_mv 10.1371/journal.pcbi.1009138
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2552289782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667303673</galeid><doaj_id>oai_doaj_org_article_e6170cee28ff4db48eed978f4dedba68</doaj_id><sourcerecordid>A667303673</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-630837c9ac67c308a1b760ad83b001cda11f3ad8ac6624d690381a9c1ea4a9153</originalsourceid><addsrcrecordid>eNqVUk1v1DAQjRCIlsI_QBCJCxx2sePEdi5IpeJjpQqkAmdrYk-2rpJ4sbML_fdM2LTqol6QJft5_OaN52my7DlnSy4Uf3sVtnGAbrmxjV9yxmou9IPsmFeVWChR6Yd38FH2JKUrxgjW8nF2JEouueDVcXbxHi9h50OELrchRuxgxJSHdrqN3lI4YQ8DwTziJmLCYYTRhyHlfXDYocub6_xXiC7foR1DTE-zRy10CZ_N50n24-OH72efF-dfP63OTs8XVhVqXEjBtFC2BiuVJQy8UZKB06JhjFsHnLeCrvQui9LJmgnNobYcoYSaV-Ike7nX3XQhmdmOZIqqKgpdK10QY7VnuABXZhN9D_HaBPDmbyDEtYGpyQ4NSq6YRSx025auKTWiIw3C6BqQmrTezdW2TY_Okg3k2YHo4cvgL8067IwuJGNs-szrWSCGn1tMo-l9sth1MGDYTv8uS620UlOtV_9Q7-9uZq2BGvBDG6iunUTNqZRKMEEbsZb3sGg57L0NA7ae4gcJbw4SiDPi73EN25TM6tvFf3C_HHLLPdfGkFLE9tY7zsw00TdNmmmizTzRlPbiru-3STcjLP4AifnydA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552289782</pqid></control><display><type>article</type><title>Behavioral correlates of cortical semantic representations modeled by word vectors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nishida, Satoshi ; Blanc, Antoine ; Maeda, Naoya ; Kado, Masataka ; Nishimoto, Shinji</creator><contributor>Cai, Ming Bo</contributor><creatorcontrib>Nishida, Satoshi ; Blanc, Antoine ; Maeda, Naoya ; Kado, Masataka ; Nishimoto, Shinji ; Cai, Ming Bo</creatorcontrib><description>The quantitative modeling of semantic representations in the brain plays a key role in understanding the neural basis of semantic processing. Previous studies have demonstrated that word vectors, which were originally developed for use in the field of natural language processing, provide a powerful tool for such quantitative modeling. However, whether semantic representations in the brain revealed by the word vector-based models actually capture our perception of semantic information remains unclear, as there has been no study explicitly examining the behavioral correlates of the modeled brain semantic representations. To address this issue, we compared the semantic structure of nouns and adjectives in the brain estimated from word vector-based brain models with that evaluated from human behavior. The brain models were constructed using voxelwise modeling to predict the functional magnetic resonance imaging (fMRI) response to natural movies from semantic contents in each movie scene through a word vector space. The semantic dissimilarity of brain word representations was then evaluated using the brain models. Meanwhile, data on human behavior reflecting the perception of semantic dissimilarity between words were collected in psychological experiments. We found a significant correlation between brain model- and behavior-derived semantic dissimilarities of words. This finding suggests that semantic representations in the brain modeled via word vectors appropriately capture our perception of word meanings.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1009138</identifier><identifier>PMID: 34161315</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adult ; Algorithms ; Auditory Perception - physiology ; Behavior ; Behavior - physiology ; Biology and Life Sciences ; Brain ; Brain - diagnostic imaging ; Brain - physiology ; Brain mapping ; Brain Mapping - statistics &amp; numerical data ; Cognition ; Computational Biology ; Engineering and Technology ; Evaluation ; Experiments ; Female ; Functional magnetic resonance imaging ; Functional Neuroimaging - statistics &amp; numerical data ; Human behavior ; Humans ; Information processing ; Labeling ; Language ; Magnetic resonance imaging ; Magnetic Resonance Imaging - statistics &amp; numerical data ; Male ; Medicine and Health Sciences ; Middle Aged ; Modelling ; Models, Neurological ; Models, Psychological ; Motion Pictures ; Natural Language Processing ; Neural circuitry ; Neuroimaging ; Neurological research ; Perception ; Physical Sciences ; Physiological aspects ; Representations ; Research and Analysis Methods ; Semantics ; Social Sciences ; Visual Perception - physiology ; Words (language) ; Young Adult</subject><ispartof>PLoS computational biology, 2021-06, Vol.17 (6), p.e1009138-e1009138</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Nishida et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Nishida et al 2021 Nishida et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-630837c9ac67c308a1b760ad83b001cda11f3ad8ac6624d690381a9c1ea4a9153</citedby><cites>FETCH-LOGICAL-c727t-630837c9ac67c308a1b760ad83b001cda11f3ad8ac6624d690381a9c1ea4a9153</cites><orcidid>0000-0001-9491-4433 ; 0000-0003-0555-518X ; 0000-0001-8015-340X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260002/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8260002/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34161315$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cai, Ming Bo</contributor><creatorcontrib>Nishida, Satoshi</creatorcontrib><creatorcontrib>Blanc, Antoine</creatorcontrib><creatorcontrib>Maeda, Naoya</creatorcontrib><creatorcontrib>Kado, Masataka</creatorcontrib><creatorcontrib>Nishimoto, Shinji</creatorcontrib><title>Behavioral correlates of cortical semantic representations modeled by word vectors</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The quantitative modeling of semantic representations in the brain plays a key role in understanding the neural basis of semantic processing. Previous studies have demonstrated that word vectors, which were originally developed for use in the field of natural language processing, provide a powerful tool for such quantitative modeling. However, whether semantic representations in the brain revealed by the word vector-based models actually capture our perception of semantic information remains unclear, as there has been no study explicitly examining the behavioral correlates of the modeled brain semantic representations. To address this issue, we compared the semantic structure of nouns and adjectives in the brain estimated from word vector-based brain models with that evaluated from human behavior. The brain models were constructed using voxelwise modeling to predict the functional magnetic resonance imaging (fMRI) response to natural movies from semantic contents in each movie scene through a word vector space. The semantic dissimilarity of brain word representations was then evaluated using the brain models. Meanwhile, data on human behavior reflecting the perception of semantic dissimilarity between words were collected in psychological experiments. We found a significant correlation between brain model- and behavior-derived semantic dissimilarities of words. This finding suggests that semantic representations in the brain modeled via word vectors appropriately capture our perception of word meanings.</description><subject>Accuracy</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Auditory Perception - physiology</subject><subject>Behavior</subject><subject>Behavior - physiology</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiology</subject><subject>Brain mapping</subject><subject>Brain Mapping - statistics &amp; numerical data</subject><subject>Cognition</subject><subject>Computational Biology</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Experiments</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Functional Neuroimaging - statistics &amp; numerical data</subject><subject>Human behavior</subject><subject>Humans</subject><subject>Information processing</subject><subject>Labeling</subject><subject>Language</subject><subject>Magnetic resonance imaging</subject><subject>Magnetic Resonance Imaging - statistics &amp; numerical data</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Modelling</subject><subject>Models, Neurological</subject><subject>Models, Psychological</subject><subject>Motion Pictures</subject><subject>Natural Language Processing</subject><subject>Neural circuitry</subject><subject>Neuroimaging</subject><subject>Neurological research</subject><subject>Perception</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Representations</subject><subject>Research and Analysis Methods</subject><subject>Semantics</subject><subject>Social Sciences</subject><subject>Visual Perception - physiology</subject><subject>Words (language)</subject><subject>Young Adult</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVUk1v1DAQjRCIlsI_QBCJCxx2sePEdi5IpeJjpQqkAmdrYk-2rpJ4sbML_fdM2LTqol6QJft5_OaN52my7DlnSy4Uf3sVtnGAbrmxjV9yxmou9IPsmFeVWChR6Yd38FH2JKUrxgjW8nF2JEouueDVcXbxHi9h50OELrchRuxgxJSHdrqN3lI4YQ8DwTziJmLCYYTRhyHlfXDYocub6_xXiC7foR1DTE-zRy10CZ_N50n24-OH72efF-dfP63OTs8XVhVqXEjBtFC2BiuVJQy8UZKB06JhjFsHnLeCrvQui9LJmgnNobYcoYSaV-Ike7nX3XQhmdmOZIqqKgpdK10QY7VnuABXZhN9D_HaBPDmbyDEtYGpyQ4NSq6YRSx025auKTWiIw3C6BqQmrTezdW2TY_Okg3k2YHo4cvgL8067IwuJGNs-szrWSCGn1tMo-l9sth1MGDYTv8uS620UlOtV_9Q7-9uZq2BGvBDG6iunUTNqZRKMEEbsZb3sGg57L0NA7ae4gcJbw4SiDPi73EN25TM6tvFf3C_HHLLPdfGkFLE9tY7zsw00TdNmmmizTzRlPbiru-3STcjLP4AifnydA</recordid><startdate>20210623</startdate><enddate>20210623</enddate><creator>Nishida, Satoshi</creator><creator>Blanc, Antoine</creator><creator>Maeda, Naoya</creator><creator>Kado, Masataka</creator><creator>Nishimoto, Shinji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9491-4433</orcidid><orcidid>https://orcid.org/0000-0003-0555-518X</orcidid><orcidid>https://orcid.org/0000-0001-8015-340X</orcidid></search><sort><creationdate>20210623</creationdate><title>Behavioral correlates of cortical semantic representations modeled by word vectors</title><author>Nishida, Satoshi ; Blanc, Antoine ; Maeda, Naoya ; Kado, Masataka ; Nishimoto, Shinji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-630837c9ac67c308a1b760ad83b001cda11f3ad8ac6624d690381a9c1ea4a9153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Auditory Perception - physiology</topic><topic>Behavior</topic><topic>Behavior - physiology</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiology</topic><topic>Brain mapping</topic><topic>Brain Mapping - statistics &amp; numerical data</topic><topic>Cognition</topic><topic>Computational Biology</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Experiments</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Functional Neuroimaging - statistics &amp; numerical data</topic><topic>Human behavior</topic><topic>Humans</topic><topic>Information processing</topic><topic>Labeling</topic><topic>Language</topic><topic>Magnetic resonance imaging</topic><topic>Magnetic Resonance Imaging - statistics &amp; numerical data</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Modelling</topic><topic>Models, Neurological</topic><topic>Models, Psychological</topic><topic>Motion Pictures</topic><topic>Natural Language Processing</topic><topic>Neural circuitry</topic><topic>Neuroimaging</topic><topic>Neurological research</topic><topic>Perception</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Representations</topic><topic>Research and Analysis Methods</topic><topic>Semantics</topic><topic>Social Sciences</topic><topic>Visual Perception - physiology</topic><topic>Words (language)</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishida, Satoshi</creatorcontrib><creatorcontrib>Blanc, Antoine</creatorcontrib><creatorcontrib>Maeda, Naoya</creatorcontrib><creatorcontrib>Kado, Masataka</creatorcontrib><creatorcontrib>Nishimoto, Shinji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishida, Satoshi</au><au>Blanc, Antoine</au><au>Maeda, Naoya</au><au>Kado, Masataka</au><au>Nishimoto, Shinji</au><au>Cai, Ming Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Behavioral correlates of cortical semantic representations modeled by word vectors</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-06-23</date><risdate>2021</risdate><volume>17</volume><issue>6</issue><spage>e1009138</spage><epage>e1009138</epage><pages>e1009138-e1009138</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The quantitative modeling of semantic representations in the brain plays a key role in understanding the neural basis of semantic processing. Previous studies have demonstrated that word vectors, which were originally developed for use in the field of natural language processing, provide a powerful tool for such quantitative modeling. However, whether semantic representations in the brain revealed by the word vector-based models actually capture our perception of semantic information remains unclear, as there has been no study explicitly examining the behavioral correlates of the modeled brain semantic representations. To address this issue, we compared the semantic structure of nouns and adjectives in the brain estimated from word vector-based brain models with that evaluated from human behavior. The brain models were constructed using voxelwise modeling to predict the functional magnetic resonance imaging (fMRI) response to natural movies from semantic contents in each movie scene through a word vector space. The semantic dissimilarity of brain word representations was then evaluated using the brain models. Meanwhile, data on human behavior reflecting the perception of semantic dissimilarity between words were collected in psychological experiments. We found a significant correlation between brain model- and behavior-derived semantic dissimilarities of words. This finding suggests that semantic representations in the brain modeled via word vectors appropriately capture our perception of word meanings.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34161315</pmid><doi>10.1371/journal.pcbi.1009138</doi><orcidid>https://orcid.org/0000-0001-9491-4433</orcidid><orcidid>https://orcid.org/0000-0003-0555-518X</orcidid><orcidid>https://orcid.org/0000-0001-8015-340X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-06, Vol.17 (6), p.e1009138-e1009138
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2552289782
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Accuracy
Adult
Algorithms
Auditory Perception - physiology
Behavior
Behavior - physiology
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Brain - physiology
Brain mapping
Brain Mapping - statistics & numerical data
Cognition
Computational Biology
Engineering and Technology
Evaluation
Experiments
Female
Functional magnetic resonance imaging
Functional Neuroimaging - statistics & numerical data
Human behavior
Humans
Information processing
Labeling
Language
Magnetic resonance imaging
Magnetic Resonance Imaging - statistics & numerical data
Male
Medicine and Health Sciences
Middle Aged
Modelling
Models, Neurological
Models, Psychological
Motion Pictures
Natural Language Processing
Neural circuitry
Neuroimaging
Neurological research
Perception
Physical Sciences
Physiological aspects
Representations
Research and Analysis Methods
Semantics
Social Sciences
Visual Perception - physiology
Words (language)
Young Adult
title Behavioral correlates of cortical semantic representations modeled by word vectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Behavioral%20correlates%20of%20cortical%20semantic%20representations%20modeled%20by%20word%20vectors&rft.jtitle=PLoS%20computational%20biology&rft.au=Nishida,%20Satoshi&rft.date=2021-06-23&rft.volume=17&rft.issue=6&rft.spage=e1009138&rft.epage=e1009138&rft.pages=e1009138-e1009138&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1009138&rft_dat=%3Cgale_plos_%3EA667303673%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552289782&rft_id=info:pmid/34161315&rft_galeid=A667303673&rft_doaj_id=oai_doaj_org_article_e6170cee28ff4db48eed978f4dedba68&rfr_iscdi=true