In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial

Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-07, Vol.16 (7), p.e0253849
Hauptverfasser: Roshanravan, Baback, Liu, Sophia Z, Ali, Amir S, Shankland, Eric G, Goss, Chessa, Amory, John K, Robertson, H Thomas, Marcinek, David J, Conley, Kevin E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0253849
container_title PloS one
container_volume 16
creator Roshanravan, Baback
Liu, Sophia Z
Ali, Amir S
Shankland, Eric G
Goss, Chessa
Amory, John K
Robertson, H Thomas
Marcinek, David J
Conley, Kevin E
description Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.
doi_str_mv 10.1371/journal.pone.0253849
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2552047923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A668604104</galeid><doaj_id>oai_doaj_org_article_1d170a5265f34c3d94d0a17e9a491691</doaj_id><sourcerecordid>A668604104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c14973df9043e5f89cf1965d655a13f34853e0902755147ae088dbb413bfd0a33</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0eLvxDdI1cRHpUlDMLi13NhpPZy4s50K-Af8axyaTQ3aBcqFY_s57-tz7FMUTxFcIFKiN1e-D51yi53vzAJiRioq7hWnSBA85xiS-0f_J8WjGK8gzBDnD4sTQjGnQtDT4veqA3u796C1yddb3-lglQPLy09gF7zu62R9B2wEts3zvdHAdsA7bQJQuncJxO_GmZRD2j7WzgDVpGEPRNtt8lT7aIBvgHGqtbtgktVmkFAgqE771v7KkmnwfFw8aJSL5sk4zoqv799dnn2cn198WJ0tz-c1FzjNa0RFSXQjICWGNZWoGyQ405wxhUhDaMWIgQLikjFES2VgVen1miKybjRUhMyK5wfdnfNRjlWMEjOGIS0FHojVgdBeXcldsK0KP6VXVv5d8GEjVUg2ZyuRRiVUDHOWnWuiBc0eqDRCUYG4QFnr7ejWr1uja9OloNxEdLrT2a3c-L2scIUhqrLAq1Eg-OvexCRbG2vjnOqM7w_nFgJzxDL64h_07uxGaqNyArZrfPatB1G55LzikKJc2lmxuIPKnzatrfOTa2xenwS8ngRkJpkfaaP6GOXqy-f_Zy--TdmXR-zWKJe20bt-eJdxCtIDWAcfYzDNbZERlEPH3FRDDh0jx47JYc-OL-g26KZFyB_-KxC1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552047923</pqid></control><display><type>article</type><title>In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Roshanravan, Baback ; Liu, Sophia Z ; Ali, Amir S ; Shankland, Eric G ; Goss, Chessa ; Amory, John K ; Robertson, H Thomas ; Marcinek, David J ; Conley, Kevin E</creator><contributor>Mitchell, Cameron J.</contributor><creatorcontrib>Roshanravan, Baback ; Liu, Sophia Z ; Ali, Amir S ; Shankland, Eric G ; Goss, Chessa ; Amory, John K ; Robertson, H Thomas ; Marcinek, David J ; Conley, Kevin E ; Mitchell, Cameron J.</creatorcontrib><description>Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0253849</identifier><identifier>PMID: 34264994</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine triphosphate ; Adenosine Triphosphate - metabolism ; Age ; Aged ; Aged, 80 and over ; Aging ; ATP ; Bioengineering ; Biology and Life Sciences ; Cardiolipin ; Clinical trials ; Coupling ; Diphosphatidylglycerol ; Double-Blind Method ; Drug dosages ; Evaluation ; Exercise - physiology ; Fatigue ; Fatigue strength ; Female ; Health aspects ; Humans ; Intolerance ; Magnetic resonance ; Male ; Medicine ; Medicine and Health Sciences ; Middle Aged ; Mitochondria ; Mitochondria, Muscle - drug effects ; Mitochondria, Muscle - metabolism ; Muscle contraction ; Muscle Contraction - drug effects ; Muscle Fatigue - drug effects ; Muscle function ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - metabolism ; Muscles ; Muscular fatigue ; Muscular function ; Musculoskeletal system ; Older people ; Oligopeptides - administration &amp; dosage ; Oligopeptides - pharmacology ; Oxidative phosphorylation ; Oxygen consumption ; Oxygen uptake ; People and Places ; Phosphorylation ; Physical Sciences ; Placebos ; Quality of life ; Research and Analysis Methods ; Skeletal muscle ; Spectroscopy ; Spectrum analysis</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0253849</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Roshanravan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Roshanravan et al 2021 Roshanravan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c14973df9043e5f89cf1965d655a13f34853e0902755147ae088dbb413bfd0a33</citedby><cites>FETCH-LOGICAL-c692t-c14973df9043e5f89cf1965d655a13f34853e0902755147ae088dbb413bfd0a33</cites><orcidid>0000-0001-5187-2149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282018/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282018/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34264994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Mitchell, Cameron J.</contributor><creatorcontrib>Roshanravan, Baback</creatorcontrib><creatorcontrib>Liu, Sophia Z</creatorcontrib><creatorcontrib>Ali, Amir S</creatorcontrib><creatorcontrib>Shankland, Eric G</creatorcontrib><creatorcontrib>Goss, Chessa</creatorcontrib><creatorcontrib>Amory, John K</creatorcontrib><creatorcontrib>Robertson, H Thomas</creatorcontrib><creatorcontrib>Marcinek, David J</creatorcontrib><creatorcontrib>Conley, Kevin E</creatorcontrib><title>In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.</description><subject>Adenosine triphosphate</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>Age</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Aging</subject><subject>ATP</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Cardiolipin</subject><subject>Clinical trials</subject><subject>Coupling</subject><subject>Diphosphatidylglycerol</subject><subject>Double-Blind Method</subject><subject>Drug dosages</subject><subject>Evaluation</subject><subject>Exercise - physiology</subject><subject>Fatigue</subject><subject>Fatigue strength</subject><subject>Female</subject><subject>Health aspects</subject><subject>Humans</subject><subject>Intolerance</subject><subject>Magnetic resonance</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Mitochondria</subject><subject>Mitochondria, Muscle - drug effects</subject><subject>Mitochondria, Muscle - metabolism</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - drug effects</subject><subject>Muscle Fatigue - drug effects</subject><subject>Muscle function</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Muscular fatigue</subject><subject>Muscular function</subject><subject>Musculoskeletal system</subject><subject>Older people</subject><subject>Oligopeptides - administration &amp; dosage</subject><subject>Oligopeptides - pharmacology</subject><subject>Oxidative phosphorylation</subject><subject>Oxygen consumption</subject><subject>Oxygen uptake</subject><subject>People and Places</subject><subject>Phosphorylation</subject><subject>Physical Sciences</subject><subject>Placebos</subject><subject>Quality of life</subject><subject>Research and Analysis Methods</subject><subject>Skeletal muscle</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYqPwDxBYQkJw0eLvxDdI1cRHpUlDMLi13NhpPZy4s50K-Af8axyaTQ3aBcqFY_s57-tz7FMUTxFcIFKiN1e-D51yi53vzAJiRioq7hWnSBA85xiS-0f_J8WjGK8gzBDnD4sTQjGnQtDT4veqA3u796C1yddb3-lglQPLy09gF7zu62R9B2wEts3zvdHAdsA7bQJQuncJxO_GmZRD2j7WzgDVpGEPRNtt8lT7aIBvgHGqtbtgktVmkFAgqE771v7KkmnwfFw8aJSL5sk4zoqv799dnn2cn198WJ0tz-c1FzjNa0RFSXQjICWGNZWoGyQ405wxhUhDaMWIgQLikjFES2VgVen1miKybjRUhMyK5wfdnfNRjlWMEjOGIS0FHojVgdBeXcldsK0KP6VXVv5d8GEjVUg2ZyuRRiVUDHOWnWuiBc0eqDRCUYG4QFnr7ejWr1uja9OloNxEdLrT2a3c-L2scIUhqrLAq1Eg-OvexCRbG2vjnOqM7w_nFgJzxDL64h_07uxGaqNyArZrfPatB1G55LzikKJc2lmxuIPKnzatrfOTa2xenwS8ngRkJpkfaaP6GOXqy-f_Zy--TdmXR-zWKJe20bt-eJdxCtIDWAcfYzDNbZERlEPH3FRDDh0jx47JYc-OL-g26KZFyB_-KxC1</recordid><startdate>20210715</startdate><enddate>20210715</enddate><creator>Roshanravan, Baback</creator><creator>Liu, Sophia Z</creator><creator>Ali, Amir S</creator><creator>Shankland, Eric G</creator><creator>Goss, Chessa</creator><creator>Amory, John K</creator><creator>Robertson, H Thomas</creator><creator>Marcinek, David J</creator><creator>Conley, Kevin E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5187-2149</orcidid></search><sort><creationdate>20210715</creationdate><title>In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial</title><author>Roshanravan, Baback ; Liu, Sophia Z ; Ali, Amir S ; Shankland, Eric G ; Goss, Chessa ; Amory, John K ; Robertson, H Thomas ; Marcinek, David J ; Conley, Kevin E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c14973df9043e5f89cf1965d655a13f34853e0902755147ae088dbb413bfd0a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine triphosphate</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>Age</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Aging</topic><topic>ATP</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Cardiolipin</topic><topic>Clinical trials</topic><topic>Coupling</topic><topic>Diphosphatidylglycerol</topic><topic>Double-Blind Method</topic><topic>Drug dosages</topic><topic>Evaluation</topic><topic>Exercise - physiology</topic><topic>Fatigue</topic><topic>Fatigue strength</topic><topic>Female</topic><topic>Health aspects</topic><topic>Humans</topic><topic>Intolerance</topic><topic>Magnetic resonance</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Mitochondria</topic><topic>Mitochondria, Muscle - drug effects</topic><topic>Mitochondria, Muscle - metabolism</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - drug effects</topic><topic>Muscle Fatigue - drug effects</topic><topic>Muscle function</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Muscular fatigue</topic><topic>Muscular function</topic><topic>Musculoskeletal system</topic><topic>Older people</topic><topic>Oligopeptides - administration &amp; dosage</topic><topic>Oligopeptides - pharmacology</topic><topic>Oxidative phosphorylation</topic><topic>Oxygen consumption</topic><topic>Oxygen uptake</topic><topic>People and Places</topic><topic>Phosphorylation</topic><topic>Physical Sciences</topic><topic>Placebos</topic><topic>Quality of life</topic><topic>Research and Analysis Methods</topic><topic>Skeletal muscle</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roshanravan, Baback</creatorcontrib><creatorcontrib>Liu, Sophia Z</creatorcontrib><creatorcontrib>Ali, Amir S</creatorcontrib><creatorcontrib>Shankland, Eric G</creatorcontrib><creatorcontrib>Goss, Chessa</creatorcontrib><creatorcontrib>Amory, John K</creatorcontrib><creatorcontrib>Robertson, H Thomas</creatorcontrib><creatorcontrib>Marcinek, David J</creatorcontrib><creatorcontrib>Conley, Kevin E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roshanravan, Baback</au><au>Liu, Sophia Z</au><au>Ali, Amir S</au><au>Shankland, Eric G</au><au>Goss, Chessa</au><au>Amory, John K</au><au>Robertson, H Thomas</au><au>Marcinek, David J</au><au>Conley, Kevin E</au><au>Mitchell, Cameron J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-07-15</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0253849</spage><pages>e0253849-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34264994</pmid><doi>10.1371/journal.pone.0253849</doi><tpages>e0253849</tpages><orcidid>https://orcid.org/0000-0001-5187-2149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-07, Vol.16 (7), p.e0253849
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2552047923
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphate
Adenosine Triphosphate - metabolism
Age
Aged
Aged, 80 and over
Aging
ATP
Bioengineering
Biology and Life Sciences
Cardiolipin
Clinical trials
Coupling
Diphosphatidylglycerol
Double-Blind Method
Drug dosages
Evaluation
Exercise - physiology
Fatigue
Fatigue strength
Female
Health aspects
Humans
Intolerance
Magnetic resonance
Male
Medicine
Medicine and Health Sciences
Middle Aged
Mitochondria
Mitochondria, Muscle - drug effects
Mitochondria, Muscle - metabolism
Muscle contraction
Muscle Contraction - drug effects
Muscle Fatigue - drug effects
Muscle function
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscles
Muscular fatigue
Muscular function
Musculoskeletal system
Older people
Oligopeptides - administration & dosage
Oligopeptides - pharmacology
Oxidative phosphorylation
Oxygen consumption
Oxygen uptake
People and Places
Phosphorylation
Physical Sciences
Placebos
Quality of life
Research and Analysis Methods
Skeletal muscle
Spectroscopy
Spectrum analysis
title In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A06%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20mitochondrial%20ATP%20production%20is%20improved%20in%20older%20adult%20skeletal%20muscle%20after%20a%20single%20dose%20of%20elamipretide%20in%20a%20randomized%20trial&rft.jtitle=PloS%20one&rft.au=Roshanravan,%20Baback&rft.date=2021-07-15&rft.volume=16&rft.issue=7&rft.spage=e0253849&rft.pages=e0253849-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0253849&rft_dat=%3Cgale_plos_%3EA668604104%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552047923&rft_id=info:pmid/34264994&rft_galeid=A668604104&rft_doaj_id=oai_doaj_org_article_1d170a5265f34c3d94d0a17e9a491691&rfr_iscdi=true