Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress

The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-07, Vol.16 (7), p.e0254111-e0254111
Hauptverfasser: Li, Zhaoguo, Liu, Zhen, Wei, Yangyang, Liu, Yuling, Xing, Linxue, Liu, Mengjie, Li, Pengtao, Lu, Quanwei, Peng, Renhai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0254111
container_issue 7
container_start_page e0254111
container_title PloS one
container_volume 16
creator Li, Zhaoguo
Liu, Zhen
Wei, Yangyang
Liu, Yuling
Xing, Linxue
Liu, Mengjie
Li, Pengtao
Lu, Quanwei
Peng, Renhai
description The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data and quantitative real time PCR showed that MIOX genes within the same group shared similar expression patterns with each other. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.
doi_str_mv 10.1371/journal.pone.0254111
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2549937096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667980163</galeid><doaj_id>oai_doaj_org_article_b0db9eec5be74910ac34858c26593cb7</doaj_id><sourcerecordid>A667980163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-ae39836e5eca41146f04b48fc14b9ca4b9bd07c7609c56adae365a88bf78e7183</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6DwQDgujFjEnTpsmNsCy6DqwM-IV3IU1PZzKkzWySrrv3_nDTnSpb2QsppeXkOW_OeZOTZc8JXhJakbc7N_he2eXe9bDEeVkQQh5kx0TQfMFyTB_e-T_KnoSww7iknLHH2REt8iLPOT3Ofp1D7zpY_DQNoPT20bRGq2hcj1yL4hbQp9X6B9pAD6hVnbE3SPXNuGA8guu9hxBGeO9da2zS6JF2MaZIA1dg3b5LmrcpiUy1BkDRIVUbF41GIY75T7NHrbIBnk3fk-zbh_dfzz4uLtbnq7PTi4VmTMSFAio4ZVCCVqnbgrW4qAvealLUIoVqUTe40hXDQpdMNYlnpeK8bisOFeH0JHtx0N1bF-RkYJDJOyFohQVLxOpANE7t5N6bTvkb6ZSRtwHnN1L5VLgFWeOmFgC6rKEqBMFK04KXXOesFFTXVdJ6N-021B00OvnglZ2Jzld6s5UbdyV5XmFS4STwehLw7nKAEGVnggZrVQ9uGOsu07kLJmhCX_6D3t_dRG1UasD0rUv76lFUnjJWCY4JG7WW91DpaaAzOt228ZznCW9mCYmJcB03aghBrr58_n92_X3OvrrDbkHZuA3ODuPlDHOwOIDauxA8tH9NJliOw_LHDTkOi5yGhf4GWgcHeQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549937096</pqid></control><display><type>article</type><title>Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Zhaoguo ; Liu, Zhen ; Wei, Yangyang ; Liu, Yuling ; Xing, Linxue ; Liu, Mengjie ; Li, Pengtao ; Lu, Quanwei ; Peng, Renhai</creator><contributor>Atif, Rana Muhammad</contributor><creatorcontrib>Li, Zhaoguo ; Liu, Zhen ; Wei, Yangyang ; Liu, Yuling ; Xing, Linxue ; Liu, Mengjie ; Li, Pengtao ; Lu, Quanwei ; Peng, Renhai ; Atif, Rana Muhammad</creatorcontrib><description>The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data and quantitative real time PCR showed that MIOX genes within the same group shared similar expression patterns with each other. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0254111</identifier><identifier>PMID: 34242283</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Abiotic stress ; Adaptability ; Amino acids ; Analysis ; Arboreta ; Biological evolution ; Biology ; Biology and Life Sciences ; Biosynthesis ; Chromosomes ; Collinearity ; Computer and Information Sciences ; Cotton ; Diploids ; Ecology and Environmental Sciences ; Ecosystem components ; Engineering and Technology ; Enzymes ; Evolution ; Evolutionary genetics ; Gene expression ; Genes ; Genomes ; Gossypium hirsutum ; Inositol ; Inositol oxygenase ; Laboratories ; Oxygenase ; Phylogenetics ; Phylogeny ; Proteins ; R&amp;D ; Regulatory sequences ; Reproduction (copying) ; Research &amp; development</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0254111-e0254111</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Li et al 2021 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-ae39836e5eca41146f04b48fc14b9ca4b9bd07c7609c56adae365a88bf78e7183</citedby><cites>FETCH-LOGICAL-c669t-ae39836e5eca41146f04b48fc14b9ca4b9bd07c7609c56adae365a88bf78e7183</cites><orcidid>0000-0002-4791-5537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270170/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8270170/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Atif, Rana Muhammad</contributor><creatorcontrib>Li, Zhaoguo</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Wei, Yangyang</creatorcontrib><creatorcontrib>Liu, Yuling</creatorcontrib><creatorcontrib>Xing, Linxue</creatorcontrib><creatorcontrib>Liu, Mengjie</creatorcontrib><creatorcontrib>Li, Pengtao</creatorcontrib><creatorcontrib>Lu, Quanwei</creatorcontrib><creatorcontrib>Peng, Renhai</creatorcontrib><title>Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress</title><title>PloS one</title><description>The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data and quantitative real time PCR showed that MIOX genes within the same group shared similar expression patterns with each other. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.</description><subject>Abiotic stress</subject><subject>Adaptability</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Arboreta</subject><subject>Biological evolution</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Chromosomes</subject><subject>Collinearity</subject><subject>Computer and Information Sciences</subject><subject>Cotton</subject><subject>Diploids</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem components</subject><subject>Engineering and Technology</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genomes</subject><subject>Gossypium hirsutum</subject><subject>Inositol</subject><subject>Inositol oxygenase</subject><subject>Laboratories</subject><subject>Oxygenase</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>R&amp;D</subject><subject>Regulatory sequences</subject><subject>Reproduction (copying)</subject><subject>Research &amp; development</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6DwQDgujFjEnTpsmNsCy6DqwM-IV3IU1PZzKkzWySrrv3_nDTnSpb2QsppeXkOW_OeZOTZc8JXhJakbc7N_he2eXe9bDEeVkQQh5kx0TQfMFyTB_e-T_KnoSww7iknLHH2REt8iLPOT3Ofp1D7zpY_DQNoPT20bRGq2hcj1yL4hbQp9X6B9pAD6hVnbE3SPXNuGA8guu9hxBGeO9da2zS6JF2MaZIA1dg3b5LmrcpiUy1BkDRIVUbF41GIY75T7NHrbIBnk3fk-zbh_dfzz4uLtbnq7PTi4VmTMSFAio4ZVCCVqnbgrW4qAvealLUIoVqUTe40hXDQpdMNYlnpeK8bisOFeH0JHtx0N1bF-RkYJDJOyFohQVLxOpANE7t5N6bTvkb6ZSRtwHnN1L5VLgFWeOmFgC6rKEqBMFK04KXXOesFFTXVdJ6N-021B00OvnglZ2Jzld6s5UbdyV5XmFS4STwehLw7nKAEGVnggZrVQ9uGOsu07kLJmhCX_6D3t_dRG1UasD0rUv76lFUnjJWCY4JG7WW91DpaaAzOt228ZznCW9mCYmJcB03aghBrr58_n92_X3OvrrDbkHZuA3ODuPlDHOwOIDauxA8tH9NJliOw_LHDTkOi5yGhf4GWgcHeQ</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>Li, Zhaoguo</creator><creator>Liu, Zhen</creator><creator>Wei, Yangyang</creator><creator>Liu, Yuling</creator><creator>Xing, Linxue</creator><creator>Liu, Mengjie</creator><creator>Li, Pengtao</creator><creator>Lu, Quanwei</creator><creator>Peng, Renhai</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4791-5537</orcidid></search><sort><creationdate>20210709</creationdate><title>Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress</title><author>Li, Zhaoguo ; Liu, Zhen ; Wei, Yangyang ; Liu, Yuling ; Xing, Linxue ; Liu, Mengjie ; Li, Pengtao ; Lu, Quanwei ; Peng, Renhai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-ae39836e5eca41146f04b48fc14b9ca4b9bd07c7609c56adae365a88bf78e7183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Adaptability</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Arboreta</topic><topic>Biological evolution</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Chromosomes</topic><topic>Collinearity</topic><topic>Computer and Information Sciences</topic><topic>Cotton</topic><topic>Diploids</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem components</topic><topic>Engineering and Technology</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genomes</topic><topic>Gossypium hirsutum</topic><topic>Inositol</topic><topic>Inositol oxygenase</topic><topic>Laboratories</topic><topic>Oxygenase</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>R&amp;D</topic><topic>Regulatory sequences</topic><topic>Reproduction (copying)</topic><topic>Research &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhaoguo</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Wei, Yangyang</creatorcontrib><creatorcontrib>Liu, Yuling</creatorcontrib><creatorcontrib>Xing, Linxue</creatorcontrib><creatorcontrib>Liu, Mengjie</creatorcontrib><creatorcontrib>Li, Pengtao</creatorcontrib><creatorcontrib>Lu, Quanwei</creatorcontrib><creatorcontrib>Peng, Renhai</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhaoguo</au><au>Liu, Zhen</au><au>Wei, Yangyang</au><au>Liu, Yuling</au><au>Xing, Linxue</au><au>Liu, Mengjie</au><au>Li, Pengtao</au><au>Lu, Quanwei</au><au>Peng, Renhai</au><au>Atif, Rana Muhammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress</atitle><jtitle>PloS one</jtitle><date>2021-07-09</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0254111</spage><epage>e0254111</epage><pages>e0254111-e0254111</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The enzyme myo-inositol oxygenase (MIOX) catalyzes the myo-inositol into glucuronic acid. In this study, 6 MIOX genes were identified from all of the three diploid cotton species (Gossypium arboretum, Gossypium herbaceum and Gossypium raimondii) and Gossypioides kirkii, 12 MIOX genes were identified from two domesticated tetraploid cottons Gossypium hirsutum, Gossypium barbadense, and 11 MIOX genes were identified from three wild tetraploid cottons Gossypium tomentosum, Gossypium mustelinum and Gossypium darwinii. The number of MIOX genes in tetraploid cotton genome is roughly twice that of diploid cotton genome. Members of MIOX family were classified into six groups based on the phylogenetic analysis. Integrated analysis of collinearity events and chromosome locations suggested that both whole genome duplication and segmental duplication events contributed to the expansion of MIOX genes during cotton evolution. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates revealed that purifying selection was the main force driving the evolution of MIOX genes. Numerous cis-acting elements related to light responsive element, defense and stress responsive element were identified in the promoter of the MIOX genes. Expression analyses of MIOX genes based on RNA-seq data and quantitative real time PCR showed that MIOX genes within the same group shared similar expression patterns with each other. All of these results provide the foundation for further study of the biological functions of MIOX genes in cotton environmental adaptability.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34242283</pmid><doi>10.1371/journal.pone.0254111</doi><tpages>e0254111</tpages><orcidid>https://orcid.org/0000-0002-4791-5537</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-07, Vol.16 (7), p.e0254111-e0254111
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2549937096
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Abiotic stress
Adaptability
Amino acids
Analysis
Arboreta
Biological evolution
Biology
Biology and Life Sciences
Biosynthesis
Chromosomes
Collinearity
Computer and Information Sciences
Cotton
Diploids
Ecology and Environmental Sciences
Ecosystem components
Engineering and Technology
Enzymes
Evolution
Evolutionary genetics
Gene expression
Genes
Genomes
Gossypium hirsutum
Inositol
Inositol oxygenase
Laboratories
Oxygenase
Phylogenetics
Phylogeny
Proteins
R&D
Regulatory sequences
Reproduction (copying)
Research & development
title Genome-wide identification of the MIOX gene family and their expression profile in cotton development and response to abiotic stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A13%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20identification%20of%20the%20MIOX%20gene%20family%20and%20their%20expression%20profile%20in%20cotton%20development%20and%20response%20to%20abiotic%20stress&rft.jtitle=PloS%20one&rft.au=Li,%20Zhaoguo&rft.date=2021-07-09&rft.volume=16&rft.issue=7&rft.spage=e0254111&rft.epage=e0254111&rft.pages=e0254111-e0254111&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0254111&rft_dat=%3Cgale_plos_%3EA667980163%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549937096&rft_id=info:pmid/34242283&rft_galeid=A667980163&rft_doaj_id=oai_doaj_org_article_b0db9eec5be74910ac34858c26593cb7&rfr_iscdi=true