Multiple imputation with compatibility for high-dimensional data

Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-07, Vol.16 (7), p.e0254112-e0254112
Hauptverfasser: Zahid, Faisal Maqbool, Faisal, Shahla, Heumann, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0254112
container_issue 7
container_start_page e0254112
container_title PloS one
container_volume 16
creator Zahid, Faisal Maqbool
Faisal, Shahla
Heumann, Christian
description Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can obtain consistent and unbiased estimates using a semi-compatible imputation model. We propose to relax the lasso penalty for selecting a large set of variables (at most n). The substantive model that also uses some formal variable selection procedure in high-dimensional structures is then expected to be nested in this imputation model. The resulting imputation model will be semi-compatible with high probability. The likelihood estimates can be unstable and can face the convergence issues as the number of variables becomes nearly as large as the sample size. To address these issues, we further propose to use a ridge penalty for obtaining the posterior distribution of the parameters based on the observed data. The proposed technique is compared with the standard MI software and MI techniques available for high-dimensional data in simulation studies and a real life dataset. Our results exhibit the superiority of the proposed approach to the existing MI approaches while addressing the compatibility issue.
doi_str_mv 10.1371/journal.pone.0254112
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2549722078</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667864970</galeid><doaj_id>oai_doaj_org_article_cc55db66f7de4a9db934f51c1ba44619</doaj_id><sourcerecordid>A667864970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-84e20d4eb6a197a43408483fba85d8a6969523133fb8bb31b95269a2c4436c5c3</originalsourceid><addsrcrecordid>eNqNkl2L1TAQhoso7u7RfyBYEGS96DFfTdsbcVn8OLCy4NdtmKbpaQ5pU5NU3X9v6qmylb2QXCQzeeZNZniT5AlGW0wL_PJgJzeA2Y52UFtEcoYxuZec4oqSjBNE7986nyRn3h8QymnJ-cPkhDJCC1SR0-T1h8kEPRqV6n6cAgRth_SHDl0qbT_GsNZGh5u0tS7t9L7LGt2rwUcKTNpAgEfJgxaMV4-XfZN8efvm8-X77Or63e7y4iqTnFchK5kiqGGq5oCrAhhlqGQlbWso86YEXvEqJxTTmCnrmuI6hrwCIhmjXOaSbpKnR93RWC-W5r2IfVcFIagoI7E7Eo2Fgxid7sHdCAta_E5YtxfggpZGCSnzvKk5b4tGMaiauqKszbHENTDG49g2yavltanuVSPVEByYlej6ZtCd2NvvoiScY1REgfNFwNlvk_JB9NpLZQwMyk7zv3NEOCGERfTZP-jd3S3UHmIDemhtfFfOouKC86LkkUSR2t5BxdWoXsvolFbH_KrgxaogMkH9DHuYvBe7Tx__n73-umaf32I7BSZ03ppp9pdfg-wISme9d6r9O2SMxGz0P9MQs9HFYnT6C_ka7bE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2549722078</pqid></control><display><type>article</type><title>Multiple imputation with compatibility for high-dimensional data</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zahid, Faisal Maqbool ; Faisal, Shahla ; Heumann, Christian</creator><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Zahid, Faisal Maqbool ; Faisal, Shahla ; Heumann, Christian ; Gadekallu, Thippa Reddy</creatorcontrib><description>Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can obtain consistent and unbiased estimates using a semi-compatible imputation model. We propose to relax the lasso penalty for selecting a large set of variables (at most n). The substantive model that also uses some formal variable selection procedure in high-dimensional structures is then expected to be nested in this imputation model. The resulting imputation model will be semi-compatible with high probability. The likelihood estimates can be unstable and can face the convergence issues as the number of variables becomes nearly as large as the sample size. To address these issues, we further propose to use a ridge penalty for obtaining the posterior distribution of the parameters based on the observed data. The proposed technique is compared with the standard MI software and MI techniques available for high-dimensional data in simulation studies and a real life dataset. Our results exhibit the superiority of the proposed approach to the existing MI approaches while addressing the compatibility issue.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0254112</identifier><identifier>PMID: 34237092</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Biology and Life Sciences ; Compatibility ; Computer and Information Sciences ; Datasets ; Engineering and Technology ; Estimates ; Evaluation ; Feature selection ; Fines &amp; penalties ; Generalized linear models ; Mathematical statistics ; Medical research ; Medicine, Experimental ; Methods ; Normal distribution ; Physical Sciences ; Research and Analysis Methods ; Variables</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0254112-e0254112</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Zahid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Zahid et al 2021 Zahid et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-84e20d4eb6a197a43408483fba85d8a6969523133fb8bb31b95269a2c4436c5c3</citedby><cites>FETCH-LOGICAL-c669t-84e20d4eb6a197a43408483fba85d8a6969523133fb8bb31b95269a2c4436c5c3</cites><orcidid>0000-0002-6303-5986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266107/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8266107/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Zahid, Faisal Maqbool</creatorcontrib><creatorcontrib>Faisal, Shahla</creatorcontrib><creatorcontrib>Heumann, Christian</creatorcontrib><title>Multiple imputation with compatibility for high-dimensional data</title><title>PloS one</title><description>Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can obtain consistent and unbiased estimates using a semi-compatible imputation model. We propose to relax the lasso penalty for selecting a large set of variables (at most n). The substantive model that also uses some formal variable selection procedure in high-dimensional structures is then expected to be nested in this imputation model. The resulting imputation model will be semi-compatible with high probability. The likelihood estimates can be unstable and can face the convergence issues as the number of variables becomes nearly as large as the sample size. To address these issues, we further propose to use a ridge penalty for obtaining the posterior distribution of the parameters based on the observed data. The proposed technique is compared with the standard MI software and MI techniques available for high-dimensional data in simulation studies and a real life dataset. Our results exhibit the superiority of the proposed approach to the existing MI approaches while addressing the compatibility issue.</description><subject>Biology and Life Sciences</subject><subject>Compatibility</subject><subject>Computer and Information Sciences</subject><subject>Datasets</subject><subject>Engineering and Technology</subject><subject>Estimates</subject><subject>Evaluation</subject><subject>Feature selection</subject><subject>Fines &amp; penalties</subject><subject>Generalized linear models</subject><subject>Mathematical statistics</subject><subject>Medical research</subject><subject>Medicine, Experimental</subject><subject>Methods</subject><subject>Normal distribution</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1TAQhoso7u7RfyBYEGS96DFfTdsbcVn8OLCy4NdtmKbpaQ5pU5NU3X9v6qmylb2QXCQzeeZNZniT5AlGW0wL_PJgJzeA2Y52UFtEcoYxuZec4oqSjBNE7986nyRn3h8QymnJ-cPkhDJCC1SR0-T1h8kEPRqV6n6cAgRth_SHDl0qbT_GsNZGh5u0tS7t9L7LGt2rwUcKTNpAgEfJgxaMV4-XfZN8efvm8-X77Or63e7y4iqTnFchK5kiqGGq5oCrAhhlqGQlbWso86YEXvEqJxTTmCnrmuI6hrwCIhmjXOaSbpKnR93RWC-W5r2IfVcFIagoI7E7Eo2Fgxid7sHdCAta_E5YtxfggpZGCSnzvKk5b4tGMaiauqKszbHENTDG49g2yavltanuVSPVEByYlej6ZtCd2NvvoiScY1REgfNFwNlvk_JB9NpLZQwMyk7zv3NEOCGERfTZP-jd3S3UHmIDemhtfFfOouKC86LkkUSR2t5BxdWoXsvolFbH_KrgxaogMkH9DHuYvBe7Tx__n73-umaf32I7BSZ03ppp9pdfg-wISme9d6r9O2SMxGz0P9MQs9HFYnT6C_ka7bE</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Zahid, Faisal Maqbool</creator><creator>Faisal, Shahla</creator><creator>Heumann, Christian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6303-5986</orcidid></search><sort><creationdate>20210708</creationdate><title>Multiple imputation with compatibility for high-dimensional data</title><author>Zahid, Faisal Maqbool ; Faisal, Shahla ; Heumann, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-84e20d4eb6a197a43408483fba85d8a6969523133fb8bb31b95269a2c4436c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Compatibility</topic><topic>Computer and Information Sciences</topic><topic>Datasets</topic><topic>Engineering and Technology</topic><topic>Estimates</topic><topic>Evaluation</topic><topic>Feature selection</topic><topic>Fines &amp; penalties</topic><topic>Generalized linear models</topic><topic>Mathematical statistics</topic><topic>Medical research</topic><topic>Medicine, Experimental</topic><topic>Methods</topic><topic>Normal distribution</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zahid, Faisal Maqbool</creatorcontrib><creatorcontrib>Faisal, Shahla</creatorcontrib><creatorcontrib>Heumann, Christian</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zahid, Faisal Maqbool</au><au>Faisal, Shahla</au><au>Heumann, Christian</au><au>Gadekallu, Thippa Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple imputation with compatibility for high-dimensional data</atitle><jtitle>PloS one</jtitle><date>2021-07-08</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0254112</spage><epage>e0254112</epage><pages>e0254112-e0254112</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiple Imputation (MI) is always challenging in high dimensional settings. The imputation model with some selected number of predictors can be incompatible with the analysis model leading to inconsistent and biased estimates. Although compatibility in such cases may not be achieved, but one can obtain consistent and unbiased estimates using a semi-compatible imputation model. We propose to relax the lasso penalty for selecting a large set of variables (at most n). The substantive model that also uses some formal variable selection procedure in high-dimensional structures is then expected to be nested in this imputation model. The resulting imputation model will be semi-compatible with high probability. The likelihood estimates can be unstable and can face the convergence issues as the number of variables becomes nearly as large as the sample size. To address these issues, we further propose to use a ridge penalty for obtaining the posterior distribution of the parameters based on the observed data. The proposed technique is compared with the standard MI software and MI techniques available for high-dimensional data in simulation studies and a real life dataset. Our results exhibit the superiority of the proposed approach to the existing MI approaches while addressing the compatibility issue.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34237092</pmid><doi>10.1371/journal.pone.0254112</doi><tpages>e0254112</tpages><orcidid>https://orcid.org/0000-0002-6303-5986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-07, Vol.16 (7), p.e0254112-e0254112
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2549722078
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
Compatibility
Computer and Information Sciences
Datasets
Engineering and Technology
Estimates
Evaluation
Feature selection
Fines & penalties
Generalized linear models
Mathematical statistics
Medical research
Medicine, Experimental
Methods
Normal distribution
Physical Sciences
Research and Analysis Methods
Variables
title Multiple imputation with compatibility for high-dimensional data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20imputation%20with%20compatibility%20for%20high-dimensional%20data&rft.jtitle=PloS%20one&rft.au=Zahid,%20Faisal%20Maqbool&rft.date=2021-07-08&rft.volume=16&rft.issue=7&rft.spage=e0254112&rft.epage=e0254112&rft.pages=e0254112-e0254112&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0254112&rft_dat=%3Cgale_plos_%3EA667864970%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2549722078&rft_id=info:pmid/34237092&rft_galeid=A667864970&rft_doaj_id=oai_doaj_org_article_cc55db66f7de4a9db934f51c1ba44619&rfr_iscdi=true