Profiling DNA break sites and transcriptional changes in response to contextual fear learning
Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-07, Vol.16 (7), p.e0249691-e0249691 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0249691 |
---|---|
container_issue | 7 |
container_start_page | e0249691 |
container_title | PloS one |
container_volume | 16 |
creator | Stott, Ryan T Kritsky, Oleg Tsai, Li-Huei |
description | Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using [gamma]H2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells. |
doi_str_mv | 10.1371/journal.pone.0249691 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2547534741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A667082138</galeid><doaj_id>oai_doaj_org_article_eba25bb316f847acaff9ad4508b107e3</doaj_id><sourcerecordid>A667082138</sourcerecordid><originalsourceid>FETCH-LOGICAL-c735t-1745b091661482e749c4a0cab710bb65d61ac2b33f794e3936246729a8b560f63</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DQQLguiLXZMmTdo3wnI-LRye-PROwiSddrN2kzVpRb-92dsqV7kXEkhC5jf_yUwyWfaQkiVlkj7f-jE46Jd773BJCl6Lmt7KTmnNioUoCLt9bX-S3YtxS0jJKiHuZieM01pywU6zr--Db21vXZe_fLfKdUD4lkc7YMzBNfkQwEUT7H6wPgXLzQZcl2zW5QFjCh0xH3xuvBvw5zAmokUIeZ8mlzTvZ3da6CM-mNaz7PPrV5_O3y4uLt-sz1cXCyNZOSyo5KUmNRWC8qpAyWvDgRjQkhKtRdkICqbQjLWy5shqJgouZFFDpUtBWsHOskdH3X3vo5oqE1VRclkyLjlNxPpINB62ah_sDsIv5cGqqwMfOgVhsKZHhRqKUmtGRVtxCQbatoaGl6TSlEhkSevFFG3UO2wMulSmfiY6tzi7UZ3_oaqCV6KSSeDpJBD89xHjoHY2Gux7cOjHq3tXnEpS84Q-_ge9ObuJ6iAlYF3rU1xzEFUrISSpCsqqRC1voNJocGfTE2L6CDh3eDZzmJ65gzFGtf744f_Zyy9z9sk1doPQD5vo-_HwyeIc5EfQBB9jwPZvkSlRhy74Uw116AI1dQH7DckE96Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547534741</pqid></control><display><type>article</type><title>Profiling DNA break sites and transcriptional changes in response to contextual fear learning</title><source>PubMed Central Free</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Stott, Ryan T ; Kritsky, Oleg ; Tsai, Li-Huei</creator><contributor>Yao, Bing</contributor><creatorcontrib>Stott, Ryan T ; Kritsky, Oleg ; Tsai, Li-Huei ; Yao, Bing</creatorcontrib><description>Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using [gamma]H2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0249691</identifier><identifier>PMID: 34197463</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Analysis ; Biology and Life Sciences ; Brain ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA fingerprinting ; Fear ; Fear conditioning ; Gene expression ; Genes ; Genetic aspects ; Genetic engineering ; Genetic transcription ; Genomes ; Glial cells ; Glucocorticoids ; Learning ; Medicine and Health Sciences ; Memory ; Neuronal-glial interactions ; Neurons ; Ontology ; Prefrontal cortex ; Transcription factors</subject><ispartof>PloS one, 2021-07, Vol.16 (7), p.e0249691-e0249691</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Stott et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Stott et al 2021 Stott et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c735t-1745b091661482e749c4a0cab710bb65d61ac2b33f794e3936246729a8b560f63</citedby><cites>FETCH-LOGICAL-c735t-1745b091661482e749c4a0cab710bb65d61ac2b33f794e3936246729a8b560f63</cites><orcidid>0000-0003-1262-0592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248687/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248687/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Yao, Bing</contributor><creatorcontrib>Stott, Ryan T</creatorcontrib><creatorcontrib>Kritsky, Oleg</creatorcontrib><creatorcontrib>Tsai, Li-Huei</creatorcontrib><title>Profiling DNA break sites and transcriptional changes in response to contextual fear learning</title><title>PloS one</title><description>Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using [gamma]H2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells.</description><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA fingerprinting</subject><subject>Fear</subject><subject>Fear conditioning</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic engineering</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Glial cells</subject><subject>Glucocorticoids</subject><subject>Learning</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Neuronal-glial interactions</subject><subject>Neurons</subject><subject>Ontology</subject><subject>Prefrontal cortex</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DQQLguiLXZMmTdo3wnI-LRye-PROwiSddrN2kzVpRb-92dsqV7kXEkhC5jf_yUwyWfaQkiVlkj7f-jE46Jd773BJCl6Lmt7KTmnNioUoCLt9bX-S3YtxS0jJKiHuZieM01pywU6zr--Db21vXZe_fLfKdUD4lkc7YMzBNfkQwEUT7H6wPgXLzQZcl2zW5QFjCh0xH3xuvBvw5zAmokUIeZ8mlzTvZ3da6CM-mNaz7PPrV5_O3y4uLt-sz1cXCyNZOSyo5KUmNRWC8qpAyWvDgRjQkhKtRdkICqbQjLWy5shqJgouZFFDpUtBWsHOskdH3X3vo5oqE1VRclkyLjlNxPpINB62ah_sDsIv5cGqqwMfOgVhsKZHhRqKUmtGRVtxCQbatoaGl6TSlEhkSevFFG3UO2wMulSmfiY6tzi7UZ3_oaqCV6KSSeDpJBD89xHjoHY2Gux7cOjHq3tXnEpS84Q-_ge9ObuJ6iAlYF3rU1xzEFUrISSpCsqqRC1voNJocGfTE2L6CDh3eDZzmJ65gzFGtf744f_Zyy9z9sk1doPQD5vo-_HwyeIc5EfQBB9jwPZvkSlRhy74Uw116AI1dQH7DckE96Q</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Stott, Ryan T</creator><creator>Kritsky, Oleg</creator><creator>Tsai, Li-Huei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1262-0592</orcidid></search><sort><creationdate>20210701</creationdate><title>Profiling DNA break sites and transcriptional changes in response to contextual fear learning</title><author>Stott, Ryan T ; Kritsky, Oleg ; Tsai, Li-Huei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c735t-1745b091661482e749c4a0cab710bb65d61ac2b33f794e3936246729a8b560f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA fingerprinting</topic><topic>Fear</topic><topic>Fear conditioning</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic engineering</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Glial cells</topic><topic>Glucocorticoids</topic><topic>Learning</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Neuronal-glial interactions</topic><topic>Neurons</topic><topic>Ontology</topic><topic>Prefrontal cortex</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stott, Ryan T</creatorcontrib><creatorcontrib>Kritsky, Oleg</creatorcontrib><creatorcontrib>Tsai, Li-Huei</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stott, Ryan T</au><au>Kritsky, Oleg</au><au>Tsai, Li-Huei</au><au>Yao, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Profiling DNA break sites and transcriptional changes in response to contextual fear learning</atitle><jtitle>PloS one</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>16</volume><issue>7</issue><spage>e0249691</spage><epage>e0249691</epage><pages>e0249691-e0249691</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Neuronal activity generates DNA double-strand breaks (DSBs) at specific loci in vitro and this facilitates the rapid transcriptional induction of early response genes (ERGs). Physiological neuronal activity, including exposure of mice to learning behaviors, also cause the formation of DSBs, yet the distribution of these breaks and their relation to brain function remains unclear. Here, following contextual fear conditioning (CFC) in mice, we profiled the locations of DSBs genome-wide in the medial prefrontal cortex and hippocampus using [gamma]H2AX ChIP-Seq. Remarkably, we found that DSB formation is widespread in the brain compared to cultured primary neurons and they are predominately involved in synaptic processes. We observed increased DNA breaks at genes induced by CFC in neuronal and non-neuronal nuclei. Activity-regulated and proteostasis-related transcription factors appear to govern some of these gene expression changes across cell types. Finally, we find that glia but not neurons have a robust transcriptional response to glucocorticoids, and many of these genes are sites of DSBs. Our results indicate that learning behaviors cause widespread DSB formation in the brain that are associated with experience-driven transcriptional changes across both neuronal and glial cells.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34197463</pmid><doi>10.1371/journal.pone.0249691</doi><tpages>e0249691</tpages><orcidid>https://orcid.org/0000-0003-1262-0592</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-07, Vol.16 (7), p.e0249691-e0249691 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2547534741 |
source | PubMed Central Free; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Analysis Biology and Life Sciences Brain Deoxyribonucleic acid DNA DNA damage DNA fingerprinting Fear Fear conditioning Gene expression Genes Genetic aspects Genetic engineering Genetic transcription Genomes Glial cells Glucocorticoids Learning Medicine and Health Sciences Memory Neuronal-glial interactions Neurons Ontology Prefrontal cortex Transcription factors |
title | Profiling DNA break sites and transcriptional changes in response to contextual fear learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A32%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Profiling%20DNA%20break%20sites%20and%20transcriptional%20changes%20in%20response%20to%20contextual%20fear%20learning&rft.jtitle=PloS%20one&rft.au=Stott,%20Ryan%20T&rft.date=2021-07-01&rft.volume=16&rft.issue=7&rft.spage=e0249691&rft.epage=e0249691&rft.pages=e0249691-e0249691&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0249691&rft_dat=%3Cgale_plos_%3EA667082138%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547534741&rft_id=info:pmid/34197463&rft_galeid=A667082138&rft_doaj_id=oai_doaj_org_article_eba25bb316f847acaff9ad4508b107e3&rfr_iscdi=true |