Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology

Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-06, Vol.16 (6), p.e0251821
Hauptverfasser: Mares, Adrianna Glinkowska, Pacassoni, Gaia, Marti, Josep Samitier, Pujals, Silvia, Albertazzi, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0251821
container_title PloS one
container_volume 16
creator Mares, Adrianna Glinkowska
Pacassoni, Gaia
Marti, Josep Samitier
Pujals, Silvia
Albertazzi, Lorenzo
description Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.
doi_str_mv 10.1371/journal.pone.0251821
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2543700297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665559820</galeid><doaj_id>oai_doaj_org_article_991caf3405aa4f0e86a81885e23d038d</doaj_id><sourcerecordid>A665559820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c080bb8a975f37eeaad943bf6ead8e18314e2b45c0c8a73022993b01b4b45b483</originalsourceid><addsrcrecordid>eNqNkttqGzEQhpfS0iRu36C0gkKhF3Z12IN0UzAhcQ2GhJ5uhVYrrWVkyZF2Q52nr1xvghdaKLqQGH3zazTzZ9kbBGeIVOjTxvfBCTvbeadmEBeIYvQsO0eM4GmJIXl-cj7LLmLcQFgQWpYvszOSo5xUDJ9n9bUP296KzngHvAZd70RtFYjmQYHb1WI-vb1aACec34nQGWlVBNoH0IS-BY2y5l6FPeijcS3YGhm8tr1pjASdkmvnrW_3r7IXWtioXg_7JPtxffX98st0dbNYXs5XU1ky3E0lpLCuqWBVoUmllBANy0mtSyUaqhAlKFe4zgsJJRUVgRgzRmqI6jwF65ySSfbuqLuzPvKhPZHjIn0VQsyqRCyPROPFhu-C2Yqw514Y_ifgQ8uHT3LGkBSa5LAQItdQ0VJQRGmhMGkgoU3S-jy81tdb1UjluiDsSHR848yat_6epzERVB3KfT8IBH_Xq9j9o-SBakWqyjjtk5jcmij5vCyLomA0zXeSzf5CpdWoNJRkEG1SfJTwcZSQmE796lrRx8iX377-P3vzc8x-OGHXSthuHb3tD_aKYzA_gskyMQalnzqHID_4-7Eb_OBvPvg7pb097fpT0qOhyW-8c_YP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2543700297</pqid></control><display><type>article</type><title>Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mares, Adrianna Glinkowska ; Pacassoni, Gaia ; Marti, Josep Samitier ; Pujals, Silvia ; Albertazzi, Lorenzo</creator><contributor>das Neves, José</contributor><creatorcontrib>Mares, Adrianna Glinkowska ; Pacassoni, Gaia ; Marti, Josep Samitier ; Pujals, Silvia ; Albertazzi, Lorenzo ; das Neves, José</creatorcontrib><description>Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251821</identifier><identifier>PMID: 34143792</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerodynamics ; Aerospace engineering ; Analysis ; Biocompatibility ; Bioengineering ; Biomaterials ; Biomedical engineering ; Biomedical materials ; Breast Neoplasms - drug therapy ; Breast Neoplasms - pathology ; Computational fluid dynamics ; Design modifications ; Drug Carriers - chemistry ; Drug delivery ; Drug Delivery Systems ; Drugs ; Editing ; Engineering ; Engineering and Technology ; Evaluation ; Female ; Flow velocity ; Fluid dynamics ; Fluid flow ; Humans ; Hydrodynamics ; Ligands ; Liquids ; MCF-7 Cells ; Medical research ; Medical treatment ; Medicine and Health Sciences ; Microfluidics ; Microfluidics - methods ; Nanoparticles ; Nanoparticles - administration &amp; dosage ; Nanoparticles - chemistry ; Nanotechnology ; Particle formation ; Physical Sciences ; Physics ; Polyesters - chemistry ; Polyethylene glycol ; Polyethylene Glycols - chemistry ; Polylactide-co-glycolide ; Polymers ; Polymers - chemistry ; Research and Analysis Methods ; Research facilities ; Reviews ; Science and technology ; Solubility ; Solvents ; Stream discharge ; Stream flow ; Technology ; Vehicles ; Water runoff</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0251821</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Mares et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Mares et al 2021 Mares et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c080bb8a975f37eeaad943bf6ead8e18314e2b45c0c8a73022993b01b4b45b483</citedby><cites>FETCH-LOGICAL-c692t-c080bb8a975f37eeaad943bf6ead8e18314e2b45c0c8a73022993b01b4b45b483</cites><orcidid>0000-0003-1776-4296 ; 0000-0002-1560-3918 ; 0000-0002-6837-0812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213178/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213178/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34143792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>das Neves, José</contributor><creatorcontrib>Mares, Adrianna Glinkowska</creatorcontrib><creatorcontrib>Pacassoni, Gaia</creatorcontrib><creatorcontrib>Marti, Josep Samitier</creatorcontrib><creatorcontrib>Pujals, Silvia</creatorcontrib><creatorcontrib>Albertazzi, Lorenzo</creatorcontrib><title>Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.</description><subject>Aerodynamics</subject><subject>Aerospace engineering</subject><subject>Analysis</subject><subject>Biocompatibility</subject><subject>Bioengineering</subject><subject>Biomaterials</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Breast Neoplasms - drug therapy</subject><subject>Breast Neoplasms - pathology</subject><subject>Computational fluid dynamics</subject><subject>Design modifications</subject><subject>Drug Carriers - chemistry</subject><subject>Drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drugs</subject><subject>Editing</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Female</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Ligands</subject><subject>Liquids</subject><subject>MCF-7 Cells</subject><subject>Medical research</subject><subject>Medical treatment</subject><subject>Medicine and Health Sciences</subject><subject>Microfluidics</subject><subject>Microfluidics - methods</subject><subject>Nanoparticles</subject><subject>Nanoparticles - administration &amp; dosage</subject><subject>Nanoparticles - chemistry</subject><subject>Nanotechnology</subject><subject>Particle formation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polyesters - chemistry</subject><subject>Polyethylene glycol</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polylactide-co-glycolide</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Research and Analysis Methods</subject><subject>Research facilities</subject><subject>Reviews</subject><subject>Science and technology</subject><subject>Solubility</subject><subject>Solvents</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>Technology</subject><subject>Vehicles</subject><subject>Water runoff</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttqGzEQhpfS0iRu36C0gkKhF3Z12IN0UzAhcQ2GhJ5uhVYrrWVkyZF2Q52nr1xvghdaKLqQGH3zazTzZ9kbBGeIVOjTxvfBCTvbeadmEBeIYvQsO0eM4GmJIXl-cj7LLmLcQFgQWpYvszOSo5xUDJ9n9bUP296KzngHvAZd70RtFYjmQYHb1WI-vb1aACec34nQGWlVBNoH0IS-BY2y5l6FPeijcS3YGhm8tr1pjASdkmvnrW_3r7IXWtioXg_7JPtxffX98st0dbNYXs5XU1ky3E0lpLCuqWBVoUmllBANy0mtSyUaqhAlKFe4zgsJJRUVgRgzRmqI6jwF65ySSfbuqLuzPvKhPZHjIn0VQsyqRCyPROPFhu-C2Yqw514Y_ifgQ8uHT3LGkBSa5LAQItdQ0VJQRGmhMGkgoU3S-jy81tdb1UjluiDsSHR848yat_6epzERVB3KfT8IBH_Xq9j9o-SBakWqyjjtk5jcmij5vCyLomA0zXeSzf5CpdWoNJRkEG1SfJTwcZSQmE796lrRx8iX377-P3vzc8x-OGHXSthuHb3tD_aKYzA_gskyMQalnzqHID_4-7Eb_OBvPvg7pb097fpT0qOhyW-8c_YP</recordid><startdate>20210618</startdate><enddate>20210618</enddate><creator>Mares, Adrianna Glinkowska</creator><creator>Pacassoni, Gaia</creator><creator>Marti, Josep Samitier</creator><creator>Pujals, Silvia</creator><creator>Albertazzi, Lorenzo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1776-4296</orcidid><orcidid>https://orcid.org/0000-0002-1560-3918</orcidid><orcidid>https://orcid.org/0000-0002-6837-0812</orcidid></search><sort><creationdate>20210618</creationdate><title>Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology</title><author>Mares, Adrianna Glinkowska ; Pacassoni, Gaia ; Marti, Josep Samitier ; Pujals, Silvia ; Albertazzi, Lorenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c080bb8a975f37eeaad943bf6ead8e18314e2b45c0c8a73022993b01b4b45b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Aerospace engineering</topic><topic>Analysis</topic><topic>Biocompatibility</topic><topic>Bioengineering</topic><topic>Biomaterials</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Breast Neoplasms - drug therapy</topic><topic>Breast Neoplasms - pathology</topic><topic>Computational fluid dynamics</topic><topic>Design modifications</topic><topic>Drug Carriers - chemistry</topic><topic>Drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drugs</topic><topic>Editing</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Female</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Ligands</topic><topic>Liquids</topic><topic>MCF-7 Cells</topic><topic>Medical research</topic><topic>Medical treatment</topic><topic>Medicine and Health Sciences</topic><topic>Microfluidics</topic><topic>Microfluidics - methods</topic><topic>Nanoparticles</topic><topic>Nanoparticles - administration &amp; dosage</topic><topic>Nanoparticles - chemistry</topic><topic>Nanotechnology</topic><topic>Particle formation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polyesters - chemistry</topic><topic>Polyethylene glycol</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polylactide-co-glycolide</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Research and Analysis Methods</topic><topic>Research facilities</topic><topic>Reviews</topic><topic>Science and technology</topic><topic>Solubility</topic><topic>Solvents</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>Technology</topic><topic>Vehicles</topic><topic>Water runoff</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mares, Adrianna Glinkowska</creatorcontrib><creatorcontrib>Pacassoni, Gaia</creatorcontrib><creatorcontrib>Marti, Josep Samitier</creatorcontrib><creatorcontrib>Pujals, Silvia</creatorcontrib><creatorcontrib>Albertazzi, Lorenzo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mares, Adrianna Glinkowska</au><au>Pacassoni, Gaia</au><au>Marti, Josep Samitier</au><au>Pujals, Silvia</au><au>Albertazzi, Lorenzo</au><au>das Neves, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-06-18</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0251821</spage><pages>e0251821-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34143792</pmid><doi>10.1371/journal.pone.0251821</doi><tpages>e0251821</tpages><orcidid>https://orcid.org/0000-0003-1776-4296</orcidid><orcidid>https://orcid.org/0000-0002-1560-3918</orcidid><orcidid>https://orcid.org/0000-0002-6837-0812</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-06, Vol.16 (6), p.e0251821
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2543700297
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aerodynamics
Aerospace engineering
Analysis
Biocompatibility
Bioengineering
Biomaterials
Biomedical engineering
Biomedical materials
Breast Neoplasms - drug therapy
Breast Neoplasms - pathology
Computational fluid dynamics
Design modifications
Drug Carriers - chemistry
Drug delivery
Drug Delivery Systems
Drugs
Editing
Engineering
Engineering and Technology
Evaluation
Female
Flow velocity
Fluid dynamics
Fluid flow
Humans
Hydrodynamics
Ligands
Liquids
MCF-7 Cells
Medical research
Medical treatment
Medicine and Health Sciences
Microfluidics
Microfluidics - methods
Nanoparticles
Nanoparticles - administration & dosage
Nanoparticles - chemistry
Nanotechnology
Particle formation
Physical Sciences
Physics
Polyesters - chemistry
Polyethylene glycol
Polyethylene Glycols - chemistry
Polylactide-co-glycolide
Polymers
Polymers - chemistry
Research and Analysis Methods
Research facilities
Reviews
Science and technology
Solubility
Solvents
Stream discharge
Stream flow
Technology
Vehicles
Water runoff
title Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A10%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formulation%20of%20tunable%20size%20PLGA-PEG%20nanoparticles%20for%20drug%20delivery%20using%20microfluidic%20technology&rft.jtitle=PloS%20one&rft.au=Mares,%20Adrianna%20Glinkowska&rft.date=2021-06-18&rft.volume=16&rft.issue=6&rft.spage=e0251821&rft.pages=e0251821-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251821&rft_dat=%3Cgale_plos_%3EA665559820%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2543700297&rft_id=info:pmid/34143792&rft_galeid=A665559820&rft_doaj_id=oai_doaj_org_article_991caf3405aa4f0e86a81885e23d038d&rfr_iscdi=true