A method for achieving complete microbial genomes and improving bins from metagenomics data
Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-05, Vol.17 (5), p.e1008972-e1008972 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008972 |
---|---|
container_issue | 5 |
container_start_page | e1008972 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Lui, Lauren M Nielsen, Torben N Arkin, Adam P |
description | Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app. |
doi_str_mv | 10.1371/journal.pcbi.1008972 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2541866480</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665274969</galeid><doaj_id>oai_doaj_org_article_8f3e01c998e5490b89abc144b33cd7e7</doaj_id><sourcerecordid>A665274969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-25deb7ec0015d15cee7022a624c61893cffbfd8446fec3d2de1e11cdda09e3093</originalsourceid><addsrcrecordid>eNqVksuO0zAUhiMEYoaBN0AQwQYWLb4kjrNBqkZcKo1A4rJiYTnHJ62rxC62O4K3x2k7oylig7ywZX_nPxf_RfGUkjnlDX2z8bvg9DDfQmfnlBDZNuxecU7rms8aXsv7d85nxaMYN4TkYyseFmect4IKJs6LH4tyxLT2pux9KDWsLV5btyrBj9sBE5ajheA7q4dyhc6PGEvtTGnHbfB7sLMuln3w46Sj94yFWBqd9OPiQa-HiE-O-0Xx_f27b5cfZ1efPywvF1czaJhIM1Yb7BoEQmhtaA2IDWFMC1aBoLLl0Pddb2RViR6BG2aQIqVgjCYtctLyi-L5QXc7-KiOc4mK1RWVQlSSZGJ5IIzXG7UNdtTht_Laqv2FDyulQ7IwoJI9R0KhbSXWVUs62eoOaFV1nINpsMlab4_Zdt2IBtCloIcT0dMXZ9dq5a-VpA0jbCrmxUHAx2RVBJsQ1uCdQ0iKNlISOvX06pgl-J87jEmNNgIOg3bod1NzrOK1qCnP6Mu_0H-PYH6gVjp3aV3vc3GQl8H8Yd5hb_P9QoiaNVUrpgpenwRkJuGvtNK7GNXy65f_YD-dstWBzb6KMWB_OzpK1OTsm_LV5Gx1dHYOe3Z37LdBN1bmfwD-KfWo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541866480</pqid></control><display><type>article</type><title>A method for achieving complete microbial genomes and improving bins from metagenomics data</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lui, Lauren M ; Nielsen, Torben N ; Arkin, Adam P</creator><contributor>Langille, Morgan</contributor><creatorcontrib>Lui, Lauren M ; Nielsen, Torben N ; Arkin, Adam P ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) ; Langille, Morgan</creatorcontrib><description>Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008972</identifier><identifier>PMID: 33961626</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Automation ; bacterial genomics ; BASIC BIOLOGICAL SCIENCES ; Bins ; Biology and Life Sciences ; Biomarkers ; Copy number ; Decomposition ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; Dynamic programming ; Electronic data processing ; Gene sequencing ; Genes ; Genomes ; genomics ; Metagenomics ; Methods ; Microbial genetics ; Microbiomes ; Microorganisms ; Molecular weight ; Nucleotide sequencing ; Operons ; Organisms ; ribonucleases ; ribosomal RNA ; RNA structure ; rRNA ; Synteny ; transfer RNA</subject><ispartof>PLoS computational biology, 2021-05, Vol.17 (5), p.e1008972-e1008972</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Lui et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Lui et al 2021 Lui et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-25deb7ec0015d15cee7022a624c61893cffbfd8446fec3d2de1e11cdda09e3093</citedby><cites>FETCH-LOGICAL-c726t-25deb7ec0015d15cee7022a624c61893cffbfd8446fec3d2de1e11cdda09e3093</cites><orcidid>0000-0002-4999-2931 ; 0000-0002-0987-7189 ; 0000-0001-8720-5268 ; 0000000187205268 ; 0000000249992931 ; 0000000209877189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172020/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172020/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33961626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1788019$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><contributor>Langille, Morgan</contributor><creatorcontrib>Lui, Lauren M</creatorcontrib><creatorcontrib>Nielsen, Torben N</creatorcontrib><creatorcontrib>Arkin, Adam P</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>A method for achieving complete microbial genomes and improving bins from metagenomics data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.</description><subject>Algorithms</subject><subject>Automation</subject><subject>bacterial genomics</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Bins</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Copy number</subject><subject>Decomposition</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>Dynamic programming</subject><subject>Electronic data processing</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>genomics</subject><subject>Metagenomics</subject><subject>Methods</subject><subject>Microbial genetics</subject><subject>Microbiomes</subject><subject>Microorganisms</subject><subject>Molecular weight</subject><subject>Nucleotide sequencing</subject><subject>Operons</subject><subject>Organisms</subject><subject>ribonucleases</subject><subject>ribosomal RNA</subject><subject>RNA structure</subject><subject>rRNA</subject><subject>Synteny</subject><subject>transfer RNA</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVksuO0zAUhiMEYoaBN0AQwQYWLb4kjrNBqkZcKo1A4rJiYTnHJ62rxC62O4K3x2k7oylig7ywZX_nPxf_RfGUkjnlDX2z8bvg9DDfQmfnlBDZNuxecU7rms8aXsv7d85nxaMYN4TkYyseFmect4IKJs6LH4tyxLT2pux9KDWsLV5btyrBj9sBE5ajheA7q4dyhc6PGEvtTGnHbfB7sLMuln3w46Sj94yFWBqd9OPiQa-HiE-O-0Xx_f27b5cfZ1efPywvF1czaJhIM1Yb7BoEQmhtaA2IDWFMC1aBoLLl0Pddb2RViR6BG2aQIqVgjCYtctLyi-L5QXc7-KiOc4mK1RWVQlSSZGJ5IIzXG7UNdtTht_Laqv2FDyulQ7IwoJI9R0KhbSXWVUs62eoOaFV1nINpsMlab4_Zdt2IBtCloIcT0dMXZ9dq5a-VpA0jbCrmxUHAx2RVBJsQ1uCdQ0iKNlISOvX06pgl-J87jEmNNgIOg3bod1NzrOK1qCnP6Mu_0H-PYH6gVjp3aV3vc3GQl8H8Yd5hb_P9QoiaNVUrpgpenwRkJuGvtNK7GNXy65f_YD-dstWBzb6KMWB_OzpK1OTsm_LV5Gx1dHYOe3Z37LdBN1bmfwD-KfWo</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Lui, Lauren M</creator><creator>Nielsen, Torben N</creator><creator>Arkin, Adam P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4999-2931</orcidid><orcidid>https://orcid.org/0000-0002-0987-7189</orcidid><orcidid>https://orcid.org/0000-0001-8720-5268</orcidid><orcidid>https://orcid.org/0000000187205268</orcidid><orcidid>https://orcid.org/0000000249992931</orcidid><orcidid>https://orcid.org/0000000209877189</orcidid></search><sort><creationdate>20210507</creationdate><title>A method for achieving complete microbial genomes and improving bins from metagenomics data</title><author>Lui, Lauren M ; Nielsen, Torben N ; Arkin, Adam P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-25deb7ec0015d15cee7022a624c61893cffbfd8446fec3d2de1e11cdda09e3093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>bacterial genomics</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Bins</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Copy number</topic><topic>Decomposition</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>Dynamic programming</topic><topic>Electronic data processing</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>genomics</topic><topic>Metagenomics</topic><topic>Methods</topic><topic>Microbial genetics</topic><topic>Microbiomes</topic><topic>Microorganisms</topic><topic>Molecular weight</topic><topic>Nucleotide sequencing</topic><topic>Operons</topic><topic>Organisms</topic><topic>ribonucleases</topic><topic>ribosomal RNA</topic><topic>RNA structure</topic><topic>rRNA</topic><topic>Synteny</topic><topic>transfer RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lui, Lauren M</creatorcontrib><creatorcontrib>Nielsen, Torben N</creatorcontrib><creatorcontrib>Arkin, Adam P</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lui, Lauren M</au><au>Nielsen, Torben N</au><au>Arkin, Adam P</au><au>Langille, Morgan</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for achieving complete microbial genomes and improving bins from metagenomics data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>e1008972</spage><epage>e1008972</epage><pages>e1008972-e1008972</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Metagenomics facilitates the study of the genetic information from uncultured microbes and complex microbial communities. Assembling complete genomes from metagenomics data is difficult because most samples have high organismal complexity and strain diversity. Some studies have attempted to extract complete bacterial, archaeal, and viral genomes and often focus on species with circular genomes so they can help confirm completeness with circularity. However, less than 100 circularized bacterial and archaeal genomes have been assembled and published from metagenomics data despite the thousands of datasets that are available. Circularized genomes are important for (1) building a reference collection as scaffolds for future assemblies, (2) providing complete gene content of a genome, (3) confirming little or no contamination of a genome, (4) studying the genomic context and synteny of genes, and (5) linking protein coding genes to ribosomal RNA genes to aid metabolic inference in 16S rRNA gene sequencing studies. We developed a semi-automated method called Jorg to help circularize small bacterial, archaeal, and viral genomes using iterative assembly, binning, and read mapping. In addition, this method exposes potential misassemblies from k-mer based assemblies. We chose species of the Candidate Phyla Radiation (CPR) to focus our initial efforts because they have small genomes and are only known to have one ribosomal RNA operon. In addition to 34 circular CPR genomes, we present one circular Margulisbacteria genome, one circular Chloroflexi genome, and two circular megaphage genomes from 19 public and published datasets. We demonstrate findings that would likely be difficult without circularizing genomes, including that ribosomal genes are likely not operonic in the majority of CPR, and that some CPR harbor diverged forms of RNase P RNA. Code and a tutorial for this method is available at https://github.com/lmlui/Jorg and is available on the DOE Systems Biology KnowledgeBase as a beta app.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33961626</pmid><doi>10.1371/journal.pcbi.1008972</doi><orcidid>https://orcid.org/0000-0002-4999-2931</orcidid><orcidid>https://orcid.org/0000-0002-0987-7189</orcidid><orcidid>https://orcid.org/0000-0001-8720-5268</orcidid><orcidid>https://orcid.org/0000000187205268</orcidid><orcidid>https://orcid.org/0000000249992931</orcidid><orcidid>https://orcid.org/0000000209877189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-05, Vol.17 (5), p.e1008972-e1008972 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2541866480 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Automation bacterial genomics BASIC BIOLOGICAL SCIENCES Bins Biology and Life Sciences Biomarkers Copy number Decomposition Deoxyribonucleic acid DNA DNA sequencing Dynamic programming Electronic data processing Gene sequencing Genes Genomes genomics Metagenomics Methods Microbial genetics Microbiomes Microorganisms Molecular weight Nucleotide sequencing Operons Organisms ribonucleases ribosomal RNA RNA structure rRNA Synteny transfer RNA |
title | A method for achieving complete microbial genomes and improving bins from metagenomics data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20achieving%20complete%20microbial%20genomes%20and%20improving%20bins%20from%20metagenomics%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Lui,%20Lauren%20M&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2021-05-07&rft.volume=17&rft.issue=5&rft.spage=e1008972&rft.epage=e1008972&rft.pages=e1008972-e1008972&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008972&rft_dat=%3Cgale_plos_%3EA665274969%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541866480&rft_id=info:pmid/33961626&rft_galeid=A665274969&rft_doaj_id=oai_doaj_org_article_8f3e01c998e5490b89abc144b33cd7e7&rfr_iscdi=true |