Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies

Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2021-05, Vol.17 (5), p.e1009566-e1009566
Hauptverfasser: Whiting, James R, Paris, Josephine R, van der Zee, Mijke J, Parsons, Paul J, Weigel, Detlef, Fraser, Bonnie A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009566
container_issue 5
container_start_page e1009566
container_title PLoS genetics
container_volume 17
creator Whiting, James R
Paris, Josephine R
van der Zee, Mijke J
Parsons, Paul J
Weigel, Detlef
Fraser, Bonnie A
description Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.
doi_str_mv 10.1371/journal.pgen.1009566
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2541857697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663948814</galeid><doaj_id>oai_doaj_org_article_b0dd666e77274e55a67bfd56de7ed6d8</doaj_id><sourcerecordid>A663948814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggiISG4yBInPiQ3SFU5rVRRidOtNYkniavEDnbS0jfhcXG622oX9QKUC8eTb_45ZaLoKUlXJBfkzbmdnYF-NbZoViRNS8b5veiQMJYngqb0_s77QfTI-_M0zVlRiofRQU7TrMxJfhj9fudAG2gx8ZOb62l22rSxbWIwNQYT9PEFOA2TtibYVAxxbYchXJrZ1Is1ECNM3SVcxb6DEeNeD3pCFYe87KDrwJsLdOFWY6xNbCAECU6dbrvkWrK3l8noUG2CtPM4avSPowcN9B6fbM-j6PuH999OPiWnZx_XJ8enSS0yPiVQKZaxKm8qJXJKU4UsowxE0VSE8EJgURLKuaqKTJG0hJwSSksQ2BBEmrH8KHq-0R176-W2qV5mjJKCCV6KQKw3hLJwLkenB3BX0oKW1wbrWglu0nWPskqV4pyjEJmgyBhwUTWKcYUCFVdF0Hq7jTZXA6oazdLiPdH9L0Z3srUXsiBCcEaCwKutgLM_5zAhOWhfY9-DQTsveedZyL28ruzFX-jd1W2pFkIB2jQ2xK0XUXnMeV7SoiA0UKs7qPAoDCO2Bhsd7HsOr_ccAjPhr6mF2Xu5_vrlP9jP_86e_dhnX-6wHUI_dd728_Kb-X2QbsDaWe8dNrcDIalclu2mc3JZNrldtuD2bHeYt04325X_AX6PJs8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541857697</pqid></control><display><type>article</type><title>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Whiting, James R ; Paris, Josephine R ; van der Zee, Mijke J ; Parsons, Paul J ; Weigel, Detlef ; Fraser, Bonnie A</creator><contributor>Schierup, Mikkel H.</contributor><creatorcontrib>Whiting, James R ; Paris, Josephine R ; van der Zee, Mijke J ; Parsons, Paul J ; Weigel, Detlef ; Fraser, Bonnie A ; Schierup, Mikkel H.</creatorcontrib><description>Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009566</identifier><identifier>PMID: 34029313</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation (Biology) ; Alleles ; Animals ; Biology and Life Sciences ; Chromosomes - genetics ; Computer and Information Sciences ; Confidence intervals ; Convergence ; Demography ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental aspects ; Evolution ; Evolution &amp; development ; Evolution, Molecular ; Genetic aspects ; Genetic diversity ; Genetic Introgression ; Genetic Variation ; Genetics, Population ; Genome - genetics ; Genomics ; Genotype &amp; phenotype ; Guppies ; Haplotypes ; Heavy metals ; Mutation ; Natural history ; Poecilia - genetics ; Population ; Predation ; Predation (Biology) ; Predatory Behavior ; Rivers ; Topography ; Zoological research</subject><ispartof>PLoS genetics, 2021-05, Vol.17 (5), p.e1009566-e1009566</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Whiting et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Whiting et al 2021 Whiting et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</citedby><cites>FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</cites><orcidid>0000-0001-5905-9056 ; 0000-0001-6868-3416 ; 0000-0002-1995-9110 ; 0000-0002-2114-7963 ; 0000-0001-8936-4991 ; 0000-0002-8441-5531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177651/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177651/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34029313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schierup, Mikkel H.</contributor><creatorcontrib>Whiting, James R</creatorcontrib><creatorcontrib>Paris, Josephine R</creatorcontrib><creatorcontrib>van der Zee, Mijke J</creatorcontrib><creatorcontrib>Parsons, Paul J</creatorcontrib><creatorcontrib>Weigel, Detlef</creatorcontrib><creatorcontrib>Fraser, Bonnie A</creatorcontrib><title>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.</description><subject>Adaptation</subject><subject>Adaptation (Biology)</subject><subject>Alleles</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Chromosomes - genetics</subject><subject>Computer and Information Sciences</subject><subject>Confidence intervals</subject><subject>Convergence</subject><subject>Demography</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental aspects</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolution, Molecular</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Introgression</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genome - genetics</subject><subject>Genomics</subject><subject>Genotype &amp; phenotype</subject><subject>Guppies</subject><subject>Haplotypes</subject><subject>Heavy metals</subject><subject>Mutation</subject><subject>Natural history</subject><subject>Poecilia - genetics</subject><subject>Population</subject><subject>Predation</subject><subject>Predation (Biology)</subject><subject>Predatory Behavior</subject><subject>Rivers</subject><subject>Topography</subject><subject>Zoological research</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggiISG4yBInPiQ3SFU5rVRRidOtNYkniavEDnbS0jfhcXG622oX9QKUC8eTb_45ZaLoKUlXJBfkzbmdnYF-NbZoViRNS8b5veiQMJYngqb0_s77QfTI-_M0zVlRiofRQU7TrMxJfhj9fudAG2gx8ZOb62l22rSxbWIwNQYT9PEFOA2TtibYVAxxbYchXJrZ1Is1ECNM3SVcxb6DEeNeD3pCFYe87KDrwJsLdOFWY6xNbCAECU6dbrvkWrK3l8noUG2CtPM4avSPowcN9B6fbM-j6PuH999OPiWnZx_XJ8enSS0yPiVQKZaxKm8qJXJKU4UsowxE0VSE8EJgURLKuaqKTJG0hJwSSksQ2BBEmrH8KHq-0R176-W2qV5mjJKCCV6KQKw3hLJwLkenB3BX0oKW1wbrWglu0nWPskqV4pyjEJmgyBhwUTWKcYUCFVdF0Hq7jTZXA6oazdLiPdH9L0Z3srUXsiBCcEaCwKutgLM_5zAhOWhfY9-DQTsveedZyL28ruzFX-jd1W2pFkIB2jQ2xK0XUXnMeV7SoiA0UKs7qPAoDCO2Bhsd7HsOr_ccAjPhr6mF2Xu5_vrlP9jP_86e_dhnX-6wHUI_dd728_Kb-X2QbsDaWe8dNrcDIalclu2mc3JZNrldtuD2bHeYt04325X_AX6PJs8</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Whiting, James R</creator><creator>Paris, Josephine R</creator><creator>van der Zee, Mijke J</creator><creator>Parsons, Paul J</creator><creator>Weigel, Detlef</creator><creator>Fraser, Bonnie A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5905-9056</orcidid><orcidid>https://orcid.org/0000-0001-6868-3416</orcidid><orcidid>https://orcid.org/0000-0002-1995-9110</orcidid><orcidid>https://orcid.org/0000-0002-2114-7963</orcidid><orcidid>https://orcid.org/0000-0001-8936-4991</orcidid><orcidid>https://orcid.org/0000-0002-8441-5531</orcidid></search><sort><creationdate>20210524</creationdate><title>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</title><author>Whiting, James R ; Paris, Josephine R ; van der Zee, Mijke J ; Parsons, Paul J ; Weigel, Detlef ; Fraser, Bonnie A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation (Biology)</topic><topic>Alleles</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Chromosomes - genetics</topic><topic>Computer and Information Sciences</topic><topic>Confidence intervals</topic><topic>Convergence</topic><topic>Demography</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental aspects</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolution, Molecular</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Introgression</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genome - genetics</topic><topic>Genomics</topic><topic>Genotype &amp; phenotype</topic><topic>Guppies</topic><topic>Haplotypes</topic><topic>Heavy metals</topic><topic>Mutation</topic><topic>Natural history</topic><topic>Poecilia - genetics</topic><topic>Population</topic><topic>Predation</topic><topic>Predation (Biology)</topic><topic>Predatory Behavior</topic><topic>Rivers</topic><topic>Topography</topic><topic>Zoological research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiting, James R</creatorcontrib><creatorcontrib>Paris, Josephine R</creatorcontrib><creatorcontrib>van der Zee, Mijke J</creatorcontrib><creatorcontrib>Parsons, Paul J</creatorcontrib><creatorcontrib>Weigel, Detlef</creatorcontrib><creatorcontrib>Fraser, Bonnie A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiting, James R</au><au>Paris, Josephine R</au><au>van der Zee, Mijke J</au><au>Parsons, Paul J</au><au>Weigel, Detlef</au><au>Fraser, Bonnie A</au><au>Schierup, Mikkel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-05-24</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>e1009566</spage><epage>e1009566</epage><pages>e1009566-e1009566</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34029313</pmid><doi>10.1371/journal.pgen.1009566</doi><orcidid>https://orcid.org/0000-0001-5905-9056</orcidid><orcidid>https://orcid.org/0000-0001-6868-3416</orcidid><orcidid>https://orcid.org/0000-0002-1995-9110</orcidid><orcidid>https://orcid.org/0000-0002-2114-7963</orcidid><orcidid>https://orcid.org/0000-0001-8936-4991</orcidid><orcidid>https://orcid.org/0000-0002-8441-5531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2021-05, Vol.17 (5), p.e1009566-e1009566
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2541857697
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Adaptation
Adaptation (Biology)
Alleles
Animals
Biology and Life Sciences
Chromosomes - genetics
Computer and Information Sciences
Confidence intervals
Convergence
Demography
Earth Sciences
Ecology and Environmental Sciences
Environmental aspects
Evolution
Evolution & development
Evolution, Molecular
Genetic aspects
Genetic diversity
Genetic Introgression
Genetic Variation
Genetics, Population
Genome - genetics
Genomics
Genotype & phenotype
Guppies
Haplotypes
Heavy metals
Mutation
Natural history
Poecilia - genetics
Population
Predation
Predation (Biology)
Predatory Behavior
Rivers
Topography
Zoological research
title Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drainage-structuring%20of%20ancestral%20variation%20and%20a%20common%20functional%20pathway%20shape%20limited%20genomic%20convergence%20in%20natural%20high-%20and%20low-predation%20guppies&rft.jtitle=PLoS%20genetics&rft.au=Whiting,%20James%20R&rft.date=2021-05-24&rft.volume=17&rft.issue=5&rft.spage=e1009566&rft.epage=e1009566&rft.pages=e1009566-e1009566&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009566&rft_dat=%3Cgale_plos_%3EA663948814%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541857697&rft_id=info:pmid/34029313&rft_galeid=A663948814&rft_doaj_id=oai_doaj_org_article_b0dd666e77274e55a67bfd56de7ed6d8&rfr_iscdi=true