Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies
Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constr...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2021-05, Vol.17 (5), p.e1009566-e1009566 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009566 |
---|---|
container_issue | 5 |
container_start_page | e1009566 |
container_title | PLoS genetics |
container_volume | 17 |
creator | Whiting, James R Paris, Josephine R van der Zee, Mijke J Parsons, Paul J Weigel, Detlef Fraser, Bonnie A |
description | Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage. |
doi_str_mv | 10.1371/journal.pgen.1009566 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2541857697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663948814</galeid><doaj_id>oai_doaj_org_article_b0dd666e77274e55a67bfd56de7ed6d8</doaj_id><sourcerecordid>A663948814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</originalsourceid><addsrcrecordid>eNqVk9tu1DAQhiMEoqXwBggiISG4yBInPiQ3SFU5rVRRidOtNYkniavEDnbS0jfhcXG622oX9QKUC8eTb_45ZaLoKUlXJBfkzbmdnYF-NbZoViRNS8b5veiQMJYngqb0_s77QfTI-_M0zVlRiofRQU7TrMxJfhj9fudAG2gx8ZOb62l22rSxbWIwNQYT9PEFOA2TtibYVAxxbYchXJrZ1Is1ECNM3SVcxb6DEeNeD3pCFYe87KDrwJsLdOFWY6xNbCAECU6dbrvkWrK3l8noUG2CtPM4avSPowcN9B6fbM-j6PuH999OPiWnZx_XJ8enSS0yPiVQKZaxKm8qJXJKU4UsowxE0VSE8EJgURLKuaqKTJG0hJwSSksQ2BBEmrH8KHq-0R176-W2qV5mjJKCCV6KQKw3hLJwLkenB3BX0oKW1wbrWglu0nWPskqV4pyjEJmgyBhwUTWKcYUCFVdF0Hq7jTZXA6oazdLiPdH9L0Z3srUXsiBCcEaCwKutgLM_5zAhOWhfY9-DQTsveedZyL28ruzFX-jd1W2pFkIB2jQ2xK0XUXnMeV7SoiA0UKs7qPAoDCO2Bhsd7HsOr_ccAjPhr6mF2Xu5_vrlP9jP_86e_dhnX-6wHUI_dd728_Kb-X2QbsDaWe8dNrcDIalclu2mc3JZNrldtuD2bHeYt04325X_AX6PJs8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2541857697</pqid></control><display><type>article</type><title>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Whiting, James R ; Paris, Josephine R ; van der Zee, Mijke J ; Parsons, Paul J ; Weigel, Detlef ; Fraser, Bonnie A</creator><contributor>Schierup, Mikkel H.</contributor><creatorcontrib>Whiting, James R ; Paris, Josephine R ; van der Zee, Mijke J ; Parsons, Paul J ; Weigel, Detlef ; Fraser, Bonnie A ; Schierup, Mikkel H.</creatorcontrib><description>Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009566</identifier><identifier>PMID: 34029313</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Adaptation (Biology) ; Alleles ; Animals ; Biology and Life Sciences ; Chromosomes - genetics ; Computer and Information Sciences ; Confidence intervals ; Convergence ; Demography ; Earth Sciences ; Ecology and Environmental Sciences ; Environmental aspects ; Evolution ; Evolution & development ; Evolution, Molecular ; Genetic aspects ; Genetic diversity ; Genetic Introgression ; Genetic Variation ; Genetics, Population ; Genome - genetics ; Genomics ; Genotype & phenotype ; Guppies ; Haplotypes ; Heavy metals ; Mutation ; Natural history ; Poecilia - genetics ; Population ; Predation ; Predation (Biology) ; Predatory Behavior ; Rivers ; Topography ; Zoological research</subject><ispartof>PLoS genetics, 2021-05, Vol.17 (5), p.e1009566-e1009566</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Whiting et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Whiting et al 2021 Whiting et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</citedby><cites>FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</cites><orcidid>0000-0001-5905-9056 ; 0000-0001-6868-3416 ; 0000-0002-1995-9110 ; 0000-0002-2114-7963 ; 0000-0001-8936-4991 ; 0000-0002-8441-5531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177651/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177651/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34029313$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schierup, Mikkel H.</contributor><creatorcontrib>Whiting, James R</creatorcontrib><creatorcontrib>Paris, Josephine R</creatorcontrib><creatorcontrib>van der Zee, Mijke J</creatorcontrib><creatorcontrib>Parsons, Paul J</creatorcontrib><creatorcontrib>Weigel, Detlef</creatorcontrib><creatorcontrib>Fraser, Bonnie A</creatorcontrib><title>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.</description><subject>Adaptation</subject><subject>Adaptation (Biology)</subject><subject>Alleles</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Chromosomes - genetics</subject><subject>Computer and Information Sciences</subject><subject>Confidence intervals</subject><subject>Convergence</subject><subject>Demography</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Environmental aspects</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Evolution, Molecular</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Introgression</subject><subject>Genetic Variation</subject><subject>Genetics, Population</subject><subject>Genome - genetics</subject><subject>Genomics</subject><subject>Genotype & phenotype</subject><subject>Guppies</subject><subject>Haplotypes</subject><subject>Heavy metals</subject><subject>Mutation</subject><subject>Natural history</subject><subject>Poecilia - genetics</subject><subject>Population</subject><subject>Predation</subject><subject>Predation (Biology)</subject><subject>Predatory Behavior</subject><subject>Rivers</subject><subject>Topography</subject><subject>Zoological research</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tu1DAQhiMEoqXwBggiISG4yBInPiQ3SFU5rVRRidOtNYkniavEDnbS0jfhcXG622oX9QKUC8eTb_45ZaLoKUlXJBfkzbmdnYF-NbZoViRNS8b5veiQMJYngqb0_s77QfTI-_M0zVlRiofRQU7TrMxJfhj9fudAG2gx8ZOb62l22rSxbWIwNQYT9PEFOA2TtibYVAxxbYchXJrZ1Is1ECNM3SVcxb6DEeNeD3pCFYe87KDrwJsLdOFWY6xNbCAECU6dbrvkWrK3l8noUG2CtPM4avSPowcN9B6fbM-j6PuH999OPiWnZx_XJ8enSS0yPiVQKZaxKm8qJXJKU4UsowxE0VSE8EJgURLKuaqKTJG0hJwSSksQ2BBEmrH8KHq-0R176-W2qV5mjJKCCV6KQKw3hLJwLkenB3BX0oKW1wbrWglu0nWPskqV4pyjEJmgyBhwUTWKcYUCFVdF0Hq7jTZXA6oazdLiPdH9L0Z3srUXsiBCcEaCwKutgLM_5zAhOWhfY9-DQTsveedZyL28ruzFX-jd1W2pFkIB2jQ2xK0XUXnMeV7SoiA0UKs7qPAoDCO2Bhsd7HsOr_ccAjPhr6mF2Xu5_vrlP9jP_86e_dhnX-6wHUI_dd728_Kb-X2QbsDaWe8dNrcDIalclu2mc3JZNrldtuD2bHeYt04325X_AX6PJs8</recordid><startdate>20210524</startdate><enddate>20210524</enddate><creator>Whiting, James R</creator><creator>Paris, Josephine R</creator><creator>van der Zee, Mijke J</creator><creator>Parsons, Paul J</creator><creator>Weigel, Detlef</creator><creator>Fraser, Bonnie A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5905-9056</orcidid><orcidid>https://orcid.org/0000-0001-6868-3416</orcidid><orcidid>https://orcid.org/0000-0002-1995-9110</orcidid><orcidid>https://orcid.org/0000-0002-2114-7963</orcidid><orcidid>https://orcid.org/0000-0001-8936-4991</orcidid><orcidid>https://orcid.org/0000-0002-8441-5531</orcidid></search><sort><creationdate>20210524</creationdate><title>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</title><author>Whiting, James R ; Paris, Josephine R ; van der Zee, Mijke J ; Parsons, Paul J ; Weigel, Detlef ; Fraser, Bonnie A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-abd525b3fbd73440de5245a78fb11687e891466db82d109a341449a7ef1ee4253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptation</topic><topic>Adaptation (Biology)</topic><topic>Alleles</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Chromosomes - genetics</topic><topic>Computer and Information Sciences</topic><topic>Confidence intervals</topic><topic>Convergence</topic><topic>Demography</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Environmental aspects</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Evolution, Molecular</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Introgression</topic><topic>Genetic Variation</topic><topic>Genetics, Population</topic><topic>Genome - genetics</topic><topic>Genomics</topic><topic>Genotype & phenotype</topic><topic>Guppies</topic><topic>Haplotypes</topic><topic>Heavy metals</topic><topic>Mutation</topic><topic>Natural history</topic><topic>Poecilia - genetics</topic><topic>Population</topic><topic>Predation</topic><topic>Predation (Biology)</topic><topic>Predatory Behavior</topic><topic>Rivers</topic><topic>Topography</topic><topic>Zoological research</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whiting, James R</creatorcontrib><creatorcontrib>Paris, Josephine R</creatorcontrib><creatorcontrib>van der Zee, Mijke J</creatorcontrib><creatorcontrib>Parsons, Paul J</creatorcontrib><creatorcontrib>Weigel, Detlef</creatorcontrib><creatorcontrib>Fraser, Bonnie A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whiting, James R</au><au>Paris, Josephine R</au><au>van der Zee, Mijke J</au><au>Parsons, Paul J</au><au>Weigel, Detlef</au><au>Fraser, Bonnie A</au><au>Schierup, Mikkel H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-05-24</date><risdate>2021</risdate><volume>17</volume><issue>5</issue><spage>e1009566</spage><epage>e1009566</epage><pages>e1009566-e1009566</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34029313</pmid><doi>10.1371/journal.pgen.1009566</doi><orcidid>https://orcid.org/0000-0001-5905-9056</orcidid><orcidid>https://orcid.org/0000-0001-6868-3416</orcidid><orcidid>https://orcid.org/0000-0002-1995-9110</orcidid><orcidid>https://orcid.org/0000-0002-2114-7963</orcidid><orcidid>https://orcid.org/0000-0001-8936-4991</orcidid><orcidid>https://orcid.org/0000-0002-8441-5531</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2021-05, Vol.17 (5), p.e1009566-e1009566 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2541857697 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Adaptation Adaptation (Biology) Alleles Animals Biology and Life Sciences Chromosomes - genetics Computer and Information Sciences Confidence intervals Convergence Demography Earth Sciences Ecology and Environmental Sciences Environmental aspects Evolution Evolution & development Evolution, Molecular Genetic aspects Genetic diversity Genetic Introgression Genetic Variation Genetics, Population Genome - genetics Genomics Genotype & phenotype Guppies Haplotypes Heavy metals Mutation Natural history Poecilia - genetics Population Predation Predation (Biology) Predatory Behavior Rivers Topography Zoological research |
title | Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drainage-structuring%20of%20ancestral%20variation%20and%20a%20common%20functional%20pathway%20shape%20limited%20genomic%20convergence%20in%20natural%20high-%20and%20low-predation%20guppies&rft.jtitle=PLoS%20genetics&rft.au=Whiting,%20James%20R&rft.date=2021-05-24&rft.volume=17&rft.issue=5&rft.spage=e1009566&rft.epage=e1009566&rft.pages=e1009566-e1009566&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009566&rft_dat=%3Cgale_plos_%3EA663948814%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2541857697&rft_id=info:pmid/34029313&rft_galeid=A663948814&rft_doaj_id=oai_doaj_org_article_b0dd666e77274e55a67bfd56de7ed6d8&rfr_iscdi=true |