Selective transport of fluorescent proteins into the phage nucleus

Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-06, Vol.16 (6), p.e0251429
Hauptverfasser: Nguyen, Katrina T, Sugie, Joseph, Khanna, Kanika, Egan, MacKennon E, Birkholz, Erica A, Lee, Jina, Beierschmitt, Christopher, Villa, Elizabeth, Pogliano, Joe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page e0251429
container_title PloS one
container_volume 16
creator Nguyen, Katrina T
Sugie, Joseph
Khanna, Kanika
Egan, MacKennon E
Birkholz, Erica A
Lee, Jina
Beierschmitt, Christopher
Villa, Elizabeth
Pogliano, Joe
description Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.
doi_str_mv 10.1371/journal.pone.0251429
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2539884498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664757206</galeid><doaj_id>oai_doaj_org_article_c3817c374adc490c965a15ffda57b35d</doaj_id><sourcerecordid>A664757206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-824ceb6e99e9d94c09bc388d009bc8971f9ecbec4ff02e7c0f02075a1fd01c4c3</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13zNR26EWvxYKBSsehuymZPdLNlkTDJF_70Zd1p2pBcmFwnJc96Tc_IWxXOMlpg2-N3OD8FJu-y9gyUiFWaEPyhOMadkURNEHx7tT4onMe4Qqmhb14-LE8pwHpScFh-uwYJK5gbKFKSLvQ-p9LrUdvABogKXyj74BMbF0rjky7SFst_KDZRuUBaG-LR4pKWN8Gxaz4rvnz5-u_iyuLz6vLo4v1yompO0aAlTsK6Bc-AdZwrxtaJt26Fx0_IGaw5qDYppjQg0CuUFNZXEukNYMUXPipcH3d76KKbyoyAV5W3LGG8zsToQnZc70Qezl-G38NKIvwc-bIQMyeRXi5waN4o2THaKcaR4nTNVWneyata06rLW-ynbsN5DNzYiSDsTnd84sxUbfyNazDFnPAu8mQSC_zlATGJvcj-tlQ78ML6boYpgzJqMvvoHvb-6idrIXIBx2ue8ahQV53XNmqohqM7U8h4qzw72RmWvaJPPZwFvZwGZSfArbeQQo1hdf_1_9urHnH19xG5B2rSN3g7JeBfnIDuAKvgYA-i7JmMkRqvfdkOMVheT1XPYi-MPugu69Tb9A5P9-XM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539884498</pqid></control><display><type>article</type><title>Selective transport of fluorescent proteins into the phage nucleus</title><source>PubMed (Medline)</source><source>PLoS</source><source>MEDLINE</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Nguyen, Katrina T ; Sugie, Joseph ; Khanna, Kanika ; Egan, MacKennon E ; Birkholz, Erica A ; Lee, Jina ; Beierschmitt, Christopher ; Villa, Elizabeth ; Pogliano, Joe</creator><contributor>Kumar, Binod</contributor><creatorcontrib>Nguyen, Katrina T ; Sugie, Joseph ; Khanna, Kanika ; Egan, MacKennon E ; Birkholz, Erica A ; Lee, Jina ; Beierschmitt, Christopher ; Villa, Elizabeth ; Pogliano, Joe ; Kumar, Binod</creatorcontrib><description>Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251429</identifier><identifier>PMID: 34111132</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Active Transport, Cell Nucleus ; Amino acids ; Analysis ; Bacteriophages - genetics ; Bacteriophages - metabolism ; Biology and Life Sciences ; Cell Nucleus - metabolism ; Cytoplasm ; DNA replication ; Editing ; Eukaryotes ; Fluorescence ; Fluorescent proteins ; Funding ; Genotype &amp; phenotype ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Infections ; Localization ; Luminescent Proteins - genetics ; Luminescent Proteins - metabolism ; Medicine and Health Sciences ; Methodology ; Mutation ; Nuclei (cytology) ; Organelles ; Phages ; Protein Transport ; Proteins ; Research and Analysis Methods ; Reviews ; Viral Proteins - metabolism</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0251429</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Nguyen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Nguyen et al 2021 Nguyen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-824ceb6e99e9d94c09bc388d009bc8971f9ecbec4ff02e7c0f02075a1fd01c4c3</citedby><cites>FETCH-LOGICAL-c692t-824ceb6e99e9d94c09bc388d009bc8971f9ecbec4ff02e7c0f02075a1fd01c4c3</cites><orcidid>0000-0001-8989-2655 ; 0000-0003-0151-1091 ; 0000-0001-7150-0350 ; 0000-0003-4677-9809 ; 0000-0003-2911-1807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191949/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34111132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kumar, Binod</contributor><creatorcontrib>Nguyen, Katrina T</creatorcontrib><creatorcontrib>Sugie, Joseph</creatorcontrib><creatorcontrib>Khanna, Kanika</creatorcontrib><creatorcontrib>Egan, MacKennon E</creatorcontrib><creatorcontrib>Birkholz, Erica A</creatorcontrib><creatorcontrib>Lee, Jina</creatorcontrib><creatorcontrib>Beierschmitt, Christopher</creatorcontrib><creatorcontrib>Villa, Elizabeth</creatorcontrib><creatorcontrib>Pogliano, Joe</creatorcontrib><title>Selective transport of fluorescent proteins into the phage nucleus</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.</description><subject>Active Transport, Cell Nucleus</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Bacteriophages - genetics</subject><subject>Bacteriophages - metabolism</subject><subject>Biology and Life Sciences</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoplasm</subject><subject>DNA replication</subject><subject>Editing</subject><subject>Eukaryotes</subject><subject>Fluorescence</subject><subject>Fluorescent proteins</subject><subject>Funding</subject><subject>Genotype &amp; phenotype</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Infections</subject><subject>Localization</subject><subject>Luminescent Proteins - genetics</subject><subject>Luminescent Proteins - metabolism</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Mutation</subject><subject>Nuclei (cytology)</subject><subject>Organelles</subject><subject>Phages</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Viral Proteins - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13zNR26EWvxYKBSsehuymZPdLNlkTDJF_70Zd1p2pBcmFwnJc96Tc_IWxXOMlpg2-N3OD8FJu-y9gyUiFWaEPyhOMadkURNEHx7tT4onMe4Qqmhb14-LE8pwHpScFh-uwYJK5gbKFKSLvQ-p9LrUdvABogKXyj74BMbF0rjky7SFst_KDZRuUBaG-LR4pKWN8Gxaz4rvnz5-u_iyuLz6vLo4v1yompO0aAlTsK6Bc-AdZwrxtaJt26Fx0_IGaw5qDYppjQg0CuUFNZXEukNYMUXPipcH3d76KKbyoyAV5W3LGG8zsToQnZc70Qezl-G38NKIvwc-bIQMyeRXi5waN4o2THaKcaR4nTNVWneyata06rLW-ynbsN5DNzYiSDsTnd84sxUbfyNazDFnPAu8mQSC_zlATGJvcj-tlQ78ML6boYpgzJqMvvoHvb-6idrIXIBx2ue8ahQV53XNmqohqM7U8h4qzw72RmWvaJPPZwFvZwGZSfArbeQQo1hdf_1_9urHnH19xG5B2rSN3g7JeBfnIDuAKvgYA-i7JmMkRqvfdkOMVheT1XPYi-MPugu69Tb9A5P9-XM</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Nguyen, Katrina T</creator><creator>Sugie, Joseph</creator><creator>Khanna, Kanika</creator><creator>Egan, MacKennon E</creator><creator>Birkholz, Erica A</creator><creator>Lee, Jina</creator><creator>Beierschmitt, Christopher</creator><creator>Villa, Elizabeth</creator><creator>Pogliano, Joe</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8989-2655</orcidid><orcidid>https://orcid.org/0000-0003-0151-1091</orcidid><orcidid>https://orcid.org/0000-0001-7150-0350</orcidid><orcidid>https://orcid.org/0000-0003-4677-9809</orcidid><orcidid>https://orcid.org/0000-0003-2911-1807</orcidid></search><sort><creationdate>20210610</creationdate><title>Selective transport of fluorescent proteins into the phage nucleus</title><author>Nguyen, Katrina T ; Sugie, Joseph ; Khanna, Kanika ; Egan, MacKennon E ; Birkholz, Erica A ; Lee, Jina ; Beierschmitt, Christopher ; Villa, Elizabeth ; Pogliano, Joe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-824ceb6e99e9d94c09bc388d009bc8971f9ecbec4ff02e7c0f02075a1fd01c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active Transport, Cell Nucleus</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Bacteriophages - genetics</topic><topic>Bacteriophages - metabolism</topic><topic>Biology and Life Sciences</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoplasm</topic><topic>DNA replication</topic><topic>Editing</topic><topic>Eukaryotes</topic><topic>Fluorescence</topic><topic>Fluorescent proteins</topic><topic>Funding</topic><topic>Genotype &amp; phenotype</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Infections</topic><topic>Localization</topic><topic>Luminescent Proteins - genetics</topic><topic>Luminescent Proteins - metabolism</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Mutation</topic><topic>Nuclei (cytology)</topic><topic>Organelles</topic><topic>Phages</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Viral Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Katrina T</creatorcontrib><creatorcontrib>Sugie, Joseph</creatorcontrib><creatorcontrib>Khanna, Kanika</creatorcontrib><creatorcontrib>Egan, MacKennon E</creatorcontrib><creatorcontrib>Birkholz, Erica A</creatorcontrib><creatorcontrib>Lee, Jina</creatorcontrib><creatorcontrib>Beierschmitt, Christopher</creatorcontrib><creatorcontrib>Villa, Elizabeth</creatorcontrib><creatorcontrib>Pogliano, Joe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Katrina T</au><au>Sugie, Joseph</au><au>Khanna, Kanika</au><au>Egan, MacKennon E</au><au>Birkholz, Erica A</au><au>Lee, Jina</au><au>Beierschmitt, Christopher</au><au>Villa, Elizabeth</au><au>Pogliano, Joe</au><au>Kumar, Binod</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective transport of fluorescent proteins into the phage nucleus</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-06-10</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0251429</spage><pages>e0251429-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP+, sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34111132</pmid><doi>10.1371/journal.pone.0251429</doi><tpages>e0251429</tpages><orcidid>https://orcid.org/0000-0001-8989-2655</orcidid><orcidid>https://orcid.org/0000-0003-0151-1091</orcidid><orcidid>https://orcid.org/0000-0001-7150-0350</orcidid><orcidid>https://orcid.org/0000-0003-4677-9809</orcidid><orcidid>https://orcid.org/0000-0003-2911-1807</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-06, Vol.16 (6), p.e0251429
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2539884498
source PubMed (Medline); PLoS; MEDLINE; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Active Transport, Cell Nucleus
Amino acids
Analysis
Bacteriophages - genetics
Bacteriophages - metabolism
Biology and Life Sciences
Cell Nucleus - metabolism
Cytoplasm
DNA replication
Editing
Eukaryotes
Fluorescence
Fluorescent proteins
Funding
Genotype & phenotype
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Infections
Localization
Luminescent Proteins - genetics
Luminescent Proteins - metabolism
Medicine and Health Sciences
Methodology
Mutation
Nuclei (cytology)
Organelles
Phages
Protein Transport
Proteins
Research and Analysis Methods
Reviews
Viral Proteins - metabolism
title Selective transport of fluorescent proteins into the phage nucleus
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A27%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20transport%20of%20fluorescent%20proteins%20into%20the%20phage%20nucleus&rft.jtitle=PloS%20one&rft.au=Nguyen,%20Katrina%20T&rft.date=2021-06-10&rft.volume=16&rft.issue=6&rft.spage=e0251429&rft.pages=e0251429-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251429&rft_dat=%3Cgale_plos_%3EA664757206%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539884498&rft_id=info:pmid/34111132&rft_galeid=A664757206&rft_doaj_id=oai_doaj_org_article_c3817c374adc490c965a15ffda57b35d&rfr_iscdi=true