Automatic ladybird beetle detection using deep-learning models

Fast and accurate taxonomic identification of invasive trans-located ladybird beetle species is essential to prevent significant impacts on biological communities, ecosystem functions, and agricultural business economics. Therefore, in this work we propose a two-step automatic detector for ladybird...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-06, Vol.16 (6), p.e0253027-e0253027
Hauptverfasser: Venegas, Pablo, Calderon, Francisco, Riofrío, Daniel, Benítez, Diego, Ramón, Giovani, Cisneros-Heredia, Diego, Coimbra, Miguel, Rojo-Álvarez, José Luis, Pérez, Noel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0253027
container_issue 6
container_start_page e0253027
container_title PloS one
container_volume 16
creator Venegas, Pablo
Calderon, Francisco
Riofrío, Daniel
Benítez, Diego
Ramón, Giovani
Cisneros-Heredia, Diego
Coimbra, Miguel
Rojo-Álvarez, José Luis
Pérez, Noel
description Fast and accurate taxonomic identification of invasive trans-located ladybird beetle species is essential to prevent significant impacts on biological communities, ecosystem functions, and agricultural business economics. Therefore, in this work we propose a two-step automatic detector for ladybird beetles in random environment images as the first stage towards an automated classification system. First, an image processing module composed of a saliency map representation, simple linear iterative clustering superpixels segmentation, and active contour methods allowed us to generate bounding boxes with possible ladybird beetles locations within an image. Subsequently, a deep convolutional neural network-based classifier selects only the bounding boxes with ladybird beetles as the final output. This method was validated on a 2, 300 ladybird beetle image data set from Ecuador and Colombia obtained from the iNaturalist project. The proposed approach achieved an accuracy score of 92% and an area under the receiver operating characteristic curve of 0.977 for the bounding box generation and classification tasks. These successful results enable the proposed detector as a valuable tool for helping specialists in the ladybird beetle detection problem.
doi_str_mv 10.1371/journal.pone.0253027
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2539884493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664757253</galeid><doaj_id>oai_doaj_org_article_0500f7ca39854bf587c44aa27e8087a6</doaj_id><sourcerecordid>A664757253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-82385312a7680f7c4d1731c992d70fe862c227340af777cd912fb4af514f2bee3</originalsourceid><addsrcrecordid>eNqNkluL1DAYhoso7rr6DwQHBNGLjjm1SW8WhsXDwMKCp9uQpl9mMqTNmKTi_ntTp8pW9kJykdPzvfne8BbFc4zWmHL89uDHMCi3PvoB1ohUFBH-oDjHDSVlTRB9eGd9VjyJ8YBQRUVdPy7OKMMYE4TPi8vNmHyvktUrp7rb1oZu1QIkB6sOEuhk_bAaox12eQ_H0oEKw7TrfQcuPi0eGeUiPJvni-Lr-3dfrj6W1zcftleb61LXdZNKQaioKCaK1wIZrlmHOcW6aUjHkQFRE00IpwwpwznXXYOJaZkyFWaG5HboRfHipHt0PsrZepTZdSMEYw3NxPZEdF4d5DHYXoVb6ZWVvw982EkVsk0HElVoakLl2oq1phK5IaYU4SCQ4KrOWpfza2PbQ6dhSEG5hejyZrB7ufM_pMANbiqWBV7PAsF_HyEm2duowTk1gB-nvhmqCG44yejLf9D73c3UTmUDdjA-v6snUbmpa8YrnuFMre-h8uigtzrnxNh8vih4syjITIKfaafGGOX286f_Z2--LdlXd9g9KJf20btxSlNcguwE6uBjDGD-fjJGcor5n9-QU8zlHHP6C63G6-s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539884493</pqid></control><display><type>article</type><title>Automatic ladybird beetle detection using deep-learning models</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Venegas, Pablo ; Calderon, Francisco ; Riofrío, Daniel ; Benítez, Diego ; Ramón, Giovani ; Cisneros-Heredia, Diego ; Coimbra, Miguel ; Rojo-Álvarez, José Luis ; Pérez, Noel</creator><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Venegas, Pablo ; Calderon, Francisco ; Riofrío, Daniel ; Benítez, Diego ; Ramón, Giovani ; Cisneros-Heredia, Diego ; Coimbra, Miguel ; Rojo-Álvarez, José Luis ; Pérez, Noel ; Gadekallu, Thippa Reddy</creatorcontrib><description>Fast and accurate taxonomic identification of invasive trans-located ladybird beetle species is essential to prevent significant impacts on biological communities, ecosystem functions, and agricultural business economics. Therefore, in this work we propose a two-step automatic detector for ladybird beetles in random environment images as the first stage towards an automated classification system. First, an image processing module composed of a saliency map representation, simple linear iterative clustering superpixels segmentation, and active contour methods allowed us to generate bounding boxes with possible ladybird beetles locations within an image. Subsequently, a deep convolutional neural network-based classifier selects only the bounding boxes with ladybird beetles as the final output. This method was validated on a 2, 300 ladybird beetle image data set from Ecuador and Colombia obtained from the iNaturalist project. The proposed approach achieved an accuracy score of 92% and an area under the receiver operating characteristic curve of 0.977 for the bounding box generation and classification tasks. These successful results enable the proposed detector as a valuable tool for helping specialists in the ladybird beetle detection problem.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0253027</identifier><identifier>PMID: 34111201</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Agribusiness ; Analysis ; Beetles ; Biology and Life Sciences ; Classification ; Computer and Information Sciences ; Conservation ; Deep learning ; Detectors ; Digital imaging ; Ecology and Environmental Sciences ; Engineering and Technology ; Evaluation ; Image processing ; Insects ; Ladybirds ; Machine learning ; Neural networks ; Nonnative species ; Physical Sciences ; Population decline ; Research and Analysis Methods ; Sensors ; Software ; Taxonomy</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0253027-e0253027</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Venegas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Venegas et al 2021 Venegas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-82385312a7680f7c4d1731c992d70fe862c227340af777cd912fb4af514f2bee3</citedby><cites>FETCH-LOGICAL-c669t-82385312a7680f7c4d1731c992d70fe862c227340af777cd912fb4af514f2bee3</cites><orcidid>0000-0003-3166-745X ; 0000-0002-6132-2738 ; 0000-0001-9815-2659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191954/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191954/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids></links><search><contributor>Gadekallu, Thippa Reddy</contributor><creatorcontrib>Venegas, Pablo</creatorcontrib><creatorcontrib>Calderon, Francisco</creatorcontrib><creatorcontrib>Riofrío, Daniel</creatorcontrib><creatorcontrib>Benítez, Diego</creatorcontrib><creatorcontrib>Ramón, Giovani</creatorcontrib><creatorcontrib>Cisneros-Heredia, Diego</creatorcontrib><creatorcontrib>Coimbra, Miguel</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><creatorcontrib>Pérez, Noel</creatorcontrib><title>Automatic ladybird beetle detection using deep-learning models</title><title>PloS one</title><description>Fast and accurate taxonomic identification of invasive trans-located ladybird beetle species is essential to prevent significant impacts on biological communities, ecosystem functions, and agricultural business economics. Therefore, in this work we propose a two-step automatic detector for ladybird beetles in random environment images as the first stage towards an automated classification system. First, an image processing module composed of a saliency map representation, simple linear iterative clustering superpixels segmentation, and active contour methods allowed us to generate bounding boxes with possible ladybird beetles locations within an image. Subsequently, a deep convolutional neural network-based classifier selects only the bounding boxes with ladybird beetles as the final output. This method was validated on a 2, 300 ladybird beetle image data set from Ecuador and Colombia obtained from the iNaturalist project. The proposed approach achieved an accuracy score of 92% and an area under the receiver operating characteristic curve of 0.977 for the bounding box generation and classification tasks. These successful results enable the proposed detector as a valuable tool for helping specialists in the ladybird beetle detection problem.</description><subject>Agribusiness</subject><subject>Analysis</subject><subject>Beetles</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Conservation</subject><subject>Deep learning</subject><subject>Detectors</subject><subject>Digital imaging</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Image processing</subject><subject>Insects</subject><subject>Ladybirds</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Nonnative species</subject><subject>Physical Sciences</subject><subject>Population decline</subject><subject>Research and Analysis Methods</subject><subject>Sensors</subject><subject>Software</subject><subject>Taxonomy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAYhoso7rr6DwQHBNGLjjm1SW8WhsXDwMKCp9uQpl9mMqTNmKTi_ntTp8pW9kJykdPzvfne8BbFc4zWmHL89uDHMCi3PvoB1ohUFBH-oDjHDSVlTRB9eGd9VjyJ8YBQRUVdPy7OKMMYE4TPi8vNmHyvktUrp7rb1oZu1QIkB6sOEuhk_bAaox12eQ_H0oEKw7TrfQcuPi0eGeUiPJvni-Lr-3dfrj6W1zcftleb61LXdZNKQaioKCaK1wIZrlmHOcW6aUjHkQFRE00IpwwpwznXXYOJaZkyFWaG5HboRfHipHt0PsrZepTZdSMEYw3NxPZEdF4d5DHYXoVb6ZWVvw982EkVsk0HElVoakLl2oq1phK5IaYU4SCQ4KrOWpfza2PbQ6dhSEG5hejyZrB7ufM_pMANbiqWBV7PAsF_HyEm2duowTk1gB-nvhmqCG44yejLf9D73c3UTmUDdjA-v6snUbmpa8YrnuFMre-h8uigtzrnxNh8vih4syjITIKfaafGGOX286f_Z2--LdlXd9g9KJf20btxSlNcguwE6uBjDGD-fjJGcor5n9-QU8zlHHP6C63G6-s</recordid><startdate>20210610</startdate><enddate>20210610</enddate><creator>Venegas, Pablo</creator><creator>Calderon, Francisco</creator><creator>Riofrío, Daniel</creator><creator>Benítez, Diego</creator><creator>Ramón, Giovani</creator><creator>Cisneros-Heredia, Diego</creator><creator>Coimbra, Miguel</creator><creator>Rojo-Álvarez, José Luis</creator><creator>Pérez, Noel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3166-745X</orcidid><orcidid>https://orcid.org/0000-0002-6132-2738</orcidid><orcidid>https://orcid.org/0000-0001-9815-2659</orcidid></search><sort><creationdate>20210610</creationdate><title>Automatic ladybird beetle detection using deep-learning models</title><author>Venegas, Pablo ; Calderon, Francisco ; Riofrío, Daniel ; Benítez, Diego ; Ramón, Giovani ; Cisneros-Heredia, Diego ; Coimbra, Miguel ; Rojo-Álvarez, José Luis ; Pérez, Noel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-82385312a7680f7c4d1731c992d70fe862c227340af777cd912fb4af514f2bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agribusiness</topic><topic>Analysis</topic><topic>Beetles</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Conservation</topic><topic>Deep learning</topic><topic>Detectors</topic><topic>Digital imaging</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Image processing</topic><topic>Insects</topic><topic>Ladybirds</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Nonnative species</topic><topic>Physical Sciences</topic><topic>Population decline</topic><topic>Research and Analysis Methods</topic><topic>Sensors</topic><topic>Software</topic><topic>Taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venegas, Pablo</creatorcontrib><creatorcontrib>Calderon, Francisco</creatorcontrib><creatorcontrib>Riofrío, Daniel</creatorcontrib><creatorcontrib>Benítez, Diego</creatorcontrib><creatorcontrib>Ramón, Giovani</creatorcontrib><creatorcontrib>Cisneros-Heredia, Diego</creatorcontrib><creatorcontrib>Coimbra, Miguel</creatorcontrib><creatorcontrib>Rojo-Álvarez, José Luis</creatorcontrib><creatorcontrib>Pérez, Noel</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venegas, Pablo</au><au>Calderon, Francisco</au><au>Riofrío, Daniel</au><au>Benítez, Diego</au><au>Ramón, Giovani</au><au>Cisneros-Heredia, Diego</au><au>Coimbra, Miguel</au><au>Rojo-Álvarez, José Luis</au><au>Pérez, Noel</au><au>Gadekallu, Thippa Reddy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic ladybird beetle detection using deep-learning models</atitle><jtitle>PloS one</jtitle><date>2021-06-10</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0253027</spage><epage>e0253027</epage><pages>e0253027-e0253027</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Fast and accurate taxonomic identification of invasive trans-located ladybird beetle species is essential to prevent significant impacts on biological communities, ecosystem functions, and agricultural business economics. Therefore, in this work we propose a two-step automatic detector for ladybird beetles in random environment images as the first stage towards an automated classification system. First, an image processing module composed of a saliency map representation, simple linear iterative clustering superpixels segmentation, and active contour methods allowed us to generate bounding boxes with possible ladybird beetles locations within an image. Subsequently, a deep convolutional neural network-based classifier selects only the bounding boxes with ladybird beetles as the final output. This method was validated on a 2, 300 ladybird beetle image data set from Ecuador and Colombia obtained from the iNaturalist project. The proposed approach achieved an accuracy score of 92% and an area under the receiver operating characteristic curve of 0.977 for the bounding box generation and classification tasks. These successful results enable the proposed detector as a valuable tool for helping specialists in the ladybird beetle detection problem.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34111201</pmid><doi>10.1371/journal.pone.0253027</doi><tpages>e0253027</tpages><orcidid>https://orcid.org/0000-0003-3166-745X</orcidid><orcidid>https://orcid.org/0000-0002-6132-2738</orcidid><orcidid>https://orcid.org/0000-0001-9815-2659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-06, Vol.16 (6), p.e0253027-e0253027
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2539884493
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agribusiness
Analysis
Beetles
Biology and Life Sciences
Classification
Computer and Information Sciences
Conservation
Deep learning
Detectors
Digital imaging
Ecology and Environmental Sciences
Engineering and Technology
Evaluation
Image processing
Insects
Ladybirds
Machine learning
Neural networks
Nonnative species
Physical Sciences
Population decline
Research and Analysis Methods
Sensors
Software
Taxonomy
title Automatic ladybird beetle detection using deep-learning models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20ladybird%20beetle%20detection%20using%20deep-learning%20models&rft.jtitle=PloS%20one&rft.au=Venegas,%20Pablo&rft.date=2021-06-10&rft.volume=16&rft.issue=6&rft.spage=e0253027&rft.epage=e0253027&rft.pages=e0253027-e0253027&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0253027&rft_dat=%3Cgale_plos_%3EA664757253%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539884493&rft_id=info:pmid/34111201&rft_galeid=A664757253&rft_doaj_id=oai_doaj_org_article_0500f7ca39854bf587c44aa27e8087a6&rfr_iscdi=true