Age-related changes in diffuse optical tomography sensitivity profiles in infancy

Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-06, Vol.16 (6), p.e0252036-e0252036
Hauptverfasser: Fu, Xiaoxue, Richards, John E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0252036
container_issue 6
container_start_page e0252036
container_title PloS one
container_volume 16
creator Fu, Xiaoxue
Richards, John E
description Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.
doi_str_mv 10.1371/journal.pone.0252036
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2539282275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A664519233</galeid><doaj_id>oai_doaj_org_article_9097244334284fafa8a79556aca1fdaa</doaj_id><sourcerecordid>A664519233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9f1d50037e84347f4e2906b5e2510a8eba1dc946c770fe06a48200de3fead7be3</originalsourceid><addsrcrecordid>eNqNkluL2zAQhU1p6W63_QelNRRK-5BUN0v2SyEsvQQWll5fxUQeOQqOlUr20vz7Ko13ics-FD_Ykr9zRjM6Wfackjnlir7b-CF00M53vsM5YQUjXD7IzmnF2UymxcOT77PsSYwbQgpeSvk4O-OCEqqEOs--LBqcBWyhxzo3a-gajLnr8tpZO0TM_a53Btq891vfBNit93nELrre3bh-n--Ct649SlxnoTP7p9kjC23EZ-P7Ivvx8cP3y8-zq-tPy8vF1czIivWzytK6IIQrLAUXygpkFZGrAllBCZS4AlqbSkijFLFIJIiSEVIjtwi1WiG_yF4efXetj3qcRtSs4BUrGVNFIpZHovaw0bvgthD22oPTfzd8aDSE1F6LuiKVYkJwLlgpLFgoQVVFIcEAtTVA8no_VhtWW6wNdn2AdmI6_dO5tW78jS5pKUtyOMyb0SD4XwPGXm9dNNi20KEfjucumJKEJvTVP-j93Y1UA6mBNHyf6pqDqV5IKQpaMc4TNb-HSk-NW2dSdA7XNxW8nQgS0-PvvoEhRr389vX_2eufU_b1CbtGaPt19O3QO9_FKSiOoAk-xoD2bsiU6EPyb6ehD8nXY_KT7MXpBd2JbqPO_wA5j_3-</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2539282275</pqid></control><display><type>article</type><title>Age-related changes in diffuse optical tomography sensitivity profiles in infancy</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Fu, Xiaoxue ; Richards, John E</creator><creatorcontrib>Fu, Xiaoxue ; Richards, John E</creatorcontrib><description>Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0252036</identifier><identifier>PMID: 34101747</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adults ; Age ; Age Factors ; Analysis ; Biology and Life Sciences ; Brain ; Brain - diagnostic imaging ; Child ; Child, Preschool ; Demographic aspects ; Editing ; Evaluation ; Female ; Hemoglobin ; Humans ; Image Processing, Computer-Assisted - methods ; Infant ; Infant, Newborn ; Magnetic Resonance Imaging ; Mailboxes ; Male ; Medicine and Health Sciences ; Methods ; Monte Carlo simulation ; Near infrared radiation ; Optical properties ; People and Places ; Physical Sciences ; Psychology ; Research and analysis methods ; Scalp ; Sensitivity ; Sensors ; Separation ; Signal strength ; Spatial discrimination ; Spatial resolution ; Spectroscopy ; Substantia grisea ; Tomography ; Tomography, Optical - methods ; Young Adult</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0252036-e0252036</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Fu, Richards. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Fu, Richards 2021 Fu, Richards</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9f1d50037e84347f4e2906b5e2510a8eba1dc946c770fe06a48200de3fead7be3</citedby><cites>FETCH-LOGICAL-c692t-9f1d50037e84347f4e2906b5e2510a8eba1dc946c770fe06a48200de3fead7be3</cites><orcidid>0000-0002-6124-731X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186805/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186805/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34101747$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Xiaoxue</creatorcontrib><creatorcontrib>Richards, John E</creatorcontrib><title>Age-related changes in diffuse optical tomography sensitivity profiles in infancy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.</description><subject>Adults</subject><subject>Age</subject><subject>Age Factors</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Demographic aspects</subject><subject>Editing</subject><subject>Evaluation</subject><subject>Female</subject><subject>Hemoglobin</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Magnetic Resonance Imaging</subject><subject>Mailboxes</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Monte Carlo simulation</subject><subject>Near infrared radiation</subject><subject>Optical properties</subject><subject>People and Places</subject><subject>Physical Sciences</subject><subject>Psychology</subject><subject>Research and analysis methods</subject><subject>Scalp</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Separation</subject><subject>Signal strength</subject><subject>Spatial discrimination</subject><subject>Spatial resolution</subject><subject>Spectroscopy</subject><subject>Substantia grisea</subject><subject>Tomography</subject><subject>Tomography, Optical - methods</subject><subject>Young Adult</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL2zAQhU1p6W63_QelNRRK-5BUN0v2SyEsvQQWll5fxUQeOQqOlUr20vz7Ko13ics-FD_Ykr9zRjM6Wfackjnlir7b-CF00M53vsM5YQUjXD7IzmnF2UymxcOT77PsSYwbQgpeSvk4O-OCEqqEOs--LBqcBWyhxzo3a-gajLnr8tpZO0TM_a53Btq891vfBNit93nELrre3bh-n--Ct649SlxnoTP7p9kjC23EZ-P7Ivvx8cP3y8-zq-tPy8vF1czIivWzytK6IIQrLAUXygpkFZGrAllBCZS4AlqbSkijFLFIJIiSEVIjtwi1WiG_yF4efXetj3qcRtSs4BUrGVNFIpZHovaw0bvgthD22oPTfzd8aDSE1F6LuiKVYkJwLlgpLFgoQVVFIcEAtTVA8no_VhtWW6wNdn2AdmI6_dO5tW78jS5pKUtyOMyb0SD4XwPGXm9dNNi20KEfjucumJKEJvTVP-j93Y1UA6mBNHyf6pqDqV5IKQpaMc4TNb-HSk-NW2dSdA7XNxW8nQgS0-PvvoEhRr389vX_2eufU_b1CbtGaPt19O3QO9_FKSiOoAk-xoD2bsiU6EPyb6ehD8nXY_KT7MXpBd2JbqPO_wA5j_3-</recordid><startdate>20210608</startdate><enddate>20210608</enddate><creator>Fu, Xiaoxue</creator><creator>Richards, John E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6124-731X</orcidid></search><sort><creationdate>20210608</creationdate><title>Age-related changes in diffuse optical tomography sensitivity profiles in infancy</title><author>Fu, Xiaoxue ; Richards, John E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9f1d50037e84347f4e2906b5e2510a8eba1dc946c770fe06a48200de3fead7be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adults</topic><topic>Age</topic><topic>Age Factors</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Demographic aspects</topic><topic>Editing</topic><topic>Evaluation</topic><topic>Female</topic><topic>Hemoglobin</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Magnetic Resonance Imaging</topic><topic>Mailboxes</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Monte Carlo simulation</topic><topic>Near infrared radiation</topic><topic>Optical properties</topic><topic>People and Places</topic><topic>Physical Sciences</topic><topic>Psychology</topic><topic>Research and analysis methods</topic><topic>Scalp</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Separation</topic><topic>Signal strength</topic><topic>Spatial discrimination</topic><topic>Spatial resolution</topic><topic>Spectroscopy</topic><topic>Substantia grisea</topic><topic>Tomography</topic><topic>Tomography, Optical - methods</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Xiaoxue</creatorcontrib><creatorcontrib>Richards, John E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Xiaoxue</au><au>Richards, John E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Age-related changes in diffuse optical tomography sensitivity profiles in infancy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-06-08</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0252036</spage><epage>e0252036</epage><pages>e0252036-e0252036</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Diffuse optical tomography uses near-infrared light spectroscopy to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of the location that generates the hemodynamic signal requires accurate descriptions of diffuse optical tomography sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. The present study used photon propagation simulation methods to examine diffuse optical tomography sensitivity profiles in realistic head models among infants ranging from 2 weeks to 24 months with narrow age bins, children (4 and 12 years) and adults (20 to 24 years). The sensitivity profiles changed systematically with the source-detector separation distance. The peak of the sensitivity function in the head was largest at the smallest separation distance and decreased as separation distance increased. The fluence value dissipated more quickly with sampling depth at the shorter source-detector separations than the longer separation distances. There were age-related differences in the shape and variance of sensitivity profiles across a wide range of source-detector separation distances. Our findings have important implications in the design of sensor placement and diffuse optical tomography image reconstruction in (functional) near-infrared light spectroscopy research. Age-appropriate realistic head models should be used to provide anatomical guidance for standalone near-infrared light spectroscopy data in infants.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34101747</pmid><doi>10.1371/journal.pone.0252036</doi><tpages>e0252036</tpages><orcidid>https://orcid.org/0000-0002-6124-731X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-06, Vol.16 (6), p.e0252036-e0252036
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2539282275
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adults
Age
Age Factors
Analysis
Biology and Life Sciences
Brain
Brain - diagnostic imaging
Child
Child, Preschool
Demographic aspects
Editing
Evaluation
Female
Hemoglobin
Humans
Image Processing, Computer-Assisted - methods
Infant
Infant, Newborn
Magnetic Resonance Imaging
Mailboxes
Male
Medicine and Health Sciences
Methods
Monte Carlo simulation
Near infrared radiation
Optical properties
People and Places
Physical Sciences
Psychology
Research and analysis methods
Scalp
Sensitivity
Sensors
Separation
Signal strength
Spatial discrimination
Spatial resolution
Spectroscopy
Substantia grisea
Tomography
Tomography, Optical - methods
Young Adult
title Age-related changes in diffuse optical tomography sensitivity profiles in infancy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A43%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Age-related%20changes%20in%20diffuse%20optical%20tomography%20sensitivity%20profiles%20in%20infancy&rft.jtitle=PloS%20one&rft.au=Fu,%20Xiaoxue&rft.date=2021-06-08&rft.volume=16&rft.issue=6&rft.spage=e0252036&rft.epage=e0252036&rft.pages=e0252036-e0252036&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0252036&rft_dat=%3Cgale_plos_%3EA664519233%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2539282275&rft_id=info:pmid/34101747&rft_galeid=A664519233&rft_doaj_id=oai_doaj_org_article_9097244334284fafa8a79556aca1fdaa&rfr_iscdi=true