Neglect of publication bias compromises meta-analyses of educational research
Because negative findings have less chance of getting published, available studies tend to be a biased sample. This leads to an inflation of effect size estimates to an unknown degree. To see how meta-analyses in education account for publication bias, we surveyed all meta-analyses published in the...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-06, Vol.16 (6), p.e0252415-e0252415 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0252415 |
---|---|
container_issue | 6 |
container_start_page | e0252415 |
container_title | PloS one |
container_volume | 16 |
creator | Ropovik, Ivan Adamkovic, Matus Greger, David |
description | Because negative findings have less chance of getting published, available studies tend to be a biased sample. This leads to an inflation of effect size estimates to an unknown degree. To see how meta-analyses in education account for publication bias, we surveyed all meta-analyses published in the last five years in the Review of Educational Research and Educational Research Review. The results show that meta-analyses usually neglect publication bias adjustment. In the minority of meta-analyses adjusting for bias, mostly non-principled adjustment methods were used, and only rarely were the conclusions based on corrected estimates, rendering the adjustment inconsequential. It is argued that appropriate state-of-the-art adjustment (e.g., selection models) should be attempted by default, yet one needs to take into account the uncertainty inherent in any meta-analytic inference under bias. We conclude by providing practical recommendations on dealing with publication bias. |
doi_str_mv | 10.1371/journal.pone.0252415 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2536786713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663983580</galeid><doaj_id>oai_doaj_org_article_dd44a95b262245719d9e5570992d1e61</doaj_id><sourcerecordid>A663983580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ed14acc6bb6a91aa570d5aea70e595e9f132f746aeca94f20ac501fdb9fc5e73</originalsourceid><addsrcrecordid>eNqNkltv1DAQhSMEohf4BwgiIVXwsIsvsbN-QaoqLisVKkHFqzVxJrteOfHWThD993i7abVBfUB5SGJ_c2Z8fLLsFSVzykv6YeOH0IGbb32Hc8IEK6h4kh1TxdlMMsKfHnwfZScxbggRfCHl8-yIF2RBS06Os2_fceXQ9Llv8u1QOWugt77LKwsxN77dBt_aiDFvsYcZpIa3u79EYz3sWXB5wIgQzPpF9qwBF_Hl-D7Nrj9_ur74Oru8-rK8OL-cGalYP8OaFmCMrCoJigKIktQCEEqCQglUDeWsKQsJaEAVDSNgBKFNXanGCCz5afZmL7t1PurRiKiZ4LJcyJLyRCz3RO1ho7fBthButQer7xZ8WGkIvTUOdV0XBShRMclYIUqqaoUiTaQUqylKmrQ-jt2GqsXaYNcHcBPR6U5n13rlf-tkcZF0ksC7USD4mwFjr5OlBp2DDv1wN3cpeZHGTujbf9DHTzdSK0gHsF3jU1-zE9XnUnK14GJBEjV_hEpPja01KTWNTeuTgveTgsT0-KdfwRCjXv788f_s1a8pe3bArhFcv47eDbvwxClY7EETfIwBmweTKdG70N-7oXeh12PoU9nrwwt6KLpPOf8LRVn8yA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536786713</pqid></control><display><type>article</type><title>Neglect of publication bias compromises meta-analyses of educational research</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ropovik, Ivan ; Adamkovic, Matus ; Greger, David</creator><contributor>Berger, Vance</contributor><creatorcontrib>Ropovik, Ivan ; Adamkovic, Matus ; Greger, David ; Berger, Vance</creatorcontrib><description>Because negative findings have less chance of getting published, available studies tend to be a biased sample. This leads to an inflation of effect size estimates to an unknown degree. To see how meta-analyses in education account for publication bias, we surveyed all meta-analyses published in the last five years in the Review of Educational Research and Educational Research Review. The results show that meta-analyses usually neglect publication bias adjustment. In the minority of meta-analyses adjusting for bias, mostly non-principled adjustment methods were used, and only rarely were the conclusions based on corrected estimates, rendering the adjustment inconsequential. It is argued that appropriate state-of-the-art adjustment (e.g., selection models) should be attempted by default, yet one needs to take into account the uncertainty inherent in any meta-analytic inference under bias. We conclude by providing practical recommendations on dealing with publication bias.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0252415</identifier><identifier>PMID: 34081730</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bias ; Biomedical Research ; Data collection ; Editing ; Education ; Educational research ; Engineering and Technology ; Evaluation ; Funding ; Humans ; Journalism, Medical ; Medical ethics ; Medicine and Health Sciences ; Meta-analysis ; Meta-Analysis as Topic ; Physical Sciences ; Population ; Psychology ; Publication Bias ; R&D ; Research & development ; Research and Analysis Methods ; Reviews ; Science Policy ; Systematic review</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0252415-e0252415</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ropovik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ropovik et al 2021 Ropovik et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ed14acc6bb6a91aa570d5aea70e595e9f132f746aeca94f20ac501fdb9fc5e73</citedby><cites>FETCH-LOGICAL-c692t-ed14acc6bb6a91aa570d5aea70e595e9f132f746aeca94f20ac501fdb9fc5e73</cites><orcidid>0000-0002-1615-0404 ; 0000-0002-9648-9108 ; 0000-0001-5222-1233</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174709/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8174709/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34081730$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Berger, Vance</contributor><creatorcontrib>Ropovik, Ivan</creatorcontrib><creatorcontrib>Adamkovic, Matus</creatorcontrib><creatorcontrib>Greger, David</creatorcontrib><title>Neglect of publication bias compromises meta-analyses of educational research</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Because negative findings have less chance of getting published, available studies tend to be a biased sample. This leads to an inflation of effect size estimates to an unknown degree. To see how meta-analyses in education account for publication bias, we surveyed all meta-analyses published in the last five years in the Review of Educational Research and Educational Research Review. The results show that meta-analyses usually neglect publication bias adjustment. In the minority of meta-analyses adjusting for bias, mostly non-principled adjustment methods were used, and only rarely were the conclusions based on corrected estimates, rendering the adjustment inconsequential. It is argued that appropriate state-of-the-art adjustment (e.g., selection models) should be attempted by default, yet one needs to take into account the uncertainty inherent in any meta-analytic inference under bias. We conclude by providing practical recommendations on dealing with publication bias.</description><subject>Analysis</subject><subject>Bias</subject><subject>Biomedical Research</subject><subject>Data collection</subject><subject>Editing</subject><subject>Education</subject><subject>Educational research</subject><subject>Engineering and Technology</subject><subject>Evaluation</subject><subject>Funding</subject><subject>Humans</subject><subject>Journalism, Medical</subject><subject>Medical ethics</subject><subject>Medicine and Health Sciences</subject><subject>Meta-analysis</subject><subject>Meta-Analysis as Topic</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Psychology</subject><subject>Publication Bias</subject><subject>R&D</subject><subject>Research & development</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Science Policy</subject><subject>Systematic review</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltv1DAQhSMEohf4BwgiIVXwsIsvsbN-QaoqLisVKkHFqzVxJrteOfHWThD993i7abVBfUB5SGJ_c2Z8fLLsFSVzykv6YeOH0IGbb32Hc8IEK6h4kh1TxdlMMsKfHnwfZScxbggRfCHl8-yIF2RBS06Os2_fceXQ9Llv8u1QOWugt77LKwsxN77dBt_aiDFvsYcZpIa3u79EYz3sWXB5wIgQzPpF9qwBF_Hl-D7Nrj9_ur74Oru8-rK8OL-cGalYP8OaFmCMrCoJigKIktQCEEqCQglUDeWsKQsJaEAVDSNgBKFNXanGCCz5afZmL7t1PurRiKiZ4LJcyJLyRCz3RO1ho7fBthButQer7xZ8WGkIvTUOdV0XBShRMclYIUqqaoUiTaQUqylKmrQ-jt2GqsXaYNcHcBPR6U5n13rlf-tkcZF0ksC7USD4mwFjr5OlBp2DDv1wN3cpeZHGTujbf9DHTzdSK0gHsF3jU1-zE9XnUnK14GJBEjV_hEpPja01KTWNTeuTgveTgsT0-KdfwRCjXv788f_s1a8pe3bArhFcv47eDbvwxClY7EETfIwBmweTKdG70N-7oXeh12PoU9nrwwt6KLpPOf8LRVn8yA</recordid><startdate>20210603</startdate><enddate>20210603</enddate><creator>Ropovik, Ivan</creator><creator>Adamkovic, Matus</creator><creator>Greger, David</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1615-0404</orcidid><orcidid>https://orcid.org/0000-0002-9648-9108</orcidid><orcidid>https://orcid.org/0000-0001-5222-1233</orcidid></search><sort><creationdate>20210603</creationdate><title>Neglect of publication bias compromises meta-analyses of educational research</title><author>Ropovik, Ivan ; Adamkovic, Matus ; Greger, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ed14acc6bb6a91aa570d5aea70e595e9f132f746aeca94f20ac501fdb9fc5e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Bias</topic><topic>Biomedical Research</topic><topic>Data collection</topic><topic>Editing</topic><topic>Education</topic><topic>Educational research</topic><topic>Engineering and Technology</topic><topic>Evaluation</topic><topic>Funding</topic><topic>Humans</topic><topic>Journalism, Medical</topic><topic>Medical ethics</topic><topic>Medicine and Health Sciences</topic><topic>Meta-analysis</topic><topic>Meta-Analysis as Topic</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Psychology</topic><topic>Publication Bias</topic><topic>R&D</topic><topic>Research & development</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Science Policy</topic><topic>Systematic review</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ropovik, Ivan</creatorcontrib><creatorcontrib>Adamkovic, Matus</creatorcontrib><creatorcontrib>Greger, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ropovik, Ivan</au><au>Adamkovic, Matus</au><au>Greger, David</au><au>Berger, Vance</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neglect of publication bias compromises meta-analyses of educational research</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-06-03</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0252415</spage><epage>e0252415</epage><pages>e0252415-e0252415</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Because negative findings have less chance of getting published, available studies tend to be a biased sample. This leads to an inflation of effect size estimates to an unknown degree. To see how meta-analyses in education account for publication bias, we surveyed all meta-analyses published in the last five years in the Review of Educational Research and Educational Research Review. The results show that meta-analyses usually neglect publication bias adjustment. In the minority of meta-analyses adjusting for bias, mostly non-principled adjustment methods were used, and only rarely were the conclusions based on corrected estimates, rendering the adjustment inconsequential. It is argued that appropriate state-of-the-art adjustment (e.g., selection models) should be attempted by default, yet one needs to take into account the uncertainty inherent in any meta-analytic inference under bias. We conclude by providing practical recommendations on dealing with publication bias.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34081730</pmid><doi>10.1371/journal.pone.0252415</doi><tpages>e0252415</tpages><orcidid>https://orcid.org/0000-0002-1615-0404</orcidid><orcidid>https://orcid.org/0000-0002-9648-9108</orcidid><orcidid>https://orcid.org/0000-0001-5222-1233</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-06, Vol.16 (6), p.e0252415-e0252415 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2536786713 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Bias Biomedical Research Data collection Editing Education Educational research Engineering and Technology Evaluation Funding Humans Journalism, Medical Medical ethics Medicine and Health Sciences Meta-analysis Meta-Analysis as Topic Physical Sciences Population Psychology Publication Bias R&D Research & development Research and Analysis Methods Reviews Science Policy Systematic review |
title | Neglect of publication bias compromises meta-analyses of educational research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T21%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neglect%20of%20publication%20bias%20compromises%20meta-analyses%20of%20educational%20research&rft.jtitle=PloS%20one&rft.au=Ropovik,%20Ivan&rft.date=2021-06-03&rft.volume=16&rft.issue=6&rft.spage=e0252415&rft.epage=e0252415&rft.pages=e0252415-e0252415&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0252415&rft_dat=%3Cgale_plos_%3EA663983580%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536786713&rft_id=info:pmid/34081730&rft_galeid=A663983580&rft_doaj_id=oai_doaj_org_article_dd44a95b262245719d9e5570992d1e61&rfr_iscdi=true |