A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis
Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angi...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-06, Vol.16 (6), p.e0252233-e0252233 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0252233 |
---|---|
container_issue | 6 |
container_start_page | e0252233 |
container_title | PloS one |
container_volume | 16 |
creator | Dorrell, Michael I Kast-Woelbern, Heidi R Botts, Ryan T Bravo, Stephen A Tremblay, Jacob R Giles, Sarah Wada, Jessica F Alexander, MaryAnn Garcia, Eric Villegas, Gabriel Booth, Caylor B Purington, Kaitlyn J Everett, Haylie M Siles, Erik N Wheelock, Michael Silva, Jordan A Fortin, Bridget M Lowey, Connor A Hale, Allison L Kurz, Troy L Rusing, Jack C Goral, Dawn M Thompson, Paul Johnson, Alec M Elson, Daniel J Tadros, Roujih Gillette, Charisa E Coopwood, Carley Rausch, Amy L Snowbarger, Jeffrey M |
description | Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients. |
doi_str_mv | 10.1371/journal.pone.0252233 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2536435245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A663852408</galeid><doaj_id>oai_doaj_org_article_2bcc474f3f2743d2ae3bcf6edb8e2f29</doaj_id><sourcerecordid>A663852408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-9d46052b179c49b52701dee3283b247dde7f7a4dd975a59bec6157f69f16a1613</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DQQLguiLXZuHJu2bg-XwYeHgwKe3IU0m3Sxtsibt4vlN_Lamu1Vu5V5IXiTM_OY_mWEmy56jYokIR2-3fgxOdsudd7AscIkxIQ-yc1QTvGC4IA_vvM-yJzFui6IkFWOPszNCC84prc-zX6vc-T10eQ_DxuvcmzyqAOCsa3Pl-8Y6OVjv4uSRrrU-DsmgYm41uMEaCzFvYC-V_Tn2skmMzgfoow2-s_0YcxnzeOsgtDamuNy6jW3s4MNBse2s7-XCOj0q0McELTiINj7NHhnZRXg23xfZ1_fvvlx9XFzffFhfra4XirF6WNSasqLEDeK1onVTYl4gDUBwRRpMudbADZdU65qXsqwbUAyV3LDaICYRQ-Qie3HU3XU-irmrUeCSMEpKTMtErI-E9nIrdsH2MtwKL604GHxohQyptg4EbpSinBpiMKdEYwmkUYaBbirABtdJ63LONjY9aJV6GGR3InrqcXYjWr8XFeK4oFUSeD0LBP99hDiI3kYFXScd-PH476pAqJzQl_-g91c3U61MBVhnfMqrJlGxYoxUCSomreU9VDoaeqvSCBqb7CcBb04CEjPAj6GVY4xi_fnT_7M3307ZV3fYDchu2ETfjYchPQXpEVTBxxjA_G0yKsS0QX-6IaYNEvMGkd_j7BCH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2536435245</pqid></control><display><type>article</type><title>A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dorrell, Michael I ; Kast-Woelbern, Heidi R ; Botts, Ryan T ; Bravo, Stephen A ; Tremblay, Jacob R ; Giles, Sarah ; Wada, Jessica F ; Alexander, MaryAnn ; Garcia, Eric ; Villegas, Gabriel ; Booth, Caylor B ; Purington, Kaitlyn J ; Everett, Haylie M ; Siles, Erik N ; Wheelock, Michael ; Silva, Jordan A ; Fortin, Bridget M ; Lowey, Connor A ; Hale, Allison L ; Kurz, Troy L ; Rusing, Jack C ; Goral, Dawn M ; Thompson, Paul ; Johnson, Alec M ; Elson, Daniel J ; Tadros, Roujih ; Gillette, Charisa E ; Coopwood, Carley ; Rausch, Amy L ; Snowbarger, Jeffrey M</creator><contributor>Ramchandran, Ramani</contributor><creatorcontrib>Dorrell, Michael I ; Kast-Woelbern, Heidi R ; Botts, Ryan T ; Bravo, Stephen A ; Tremblay, Jacob R ; Giles, Sarah ; Wada, Jessica F ; Alexander, MaryAnn ; Garcia, Eric ; Villegas, Gabriel ; Booth, Caylor B ; Purington, Kaitlyn J ; Everett, Haylie M ; Siles, Erik N ; Wheelock, Michael ; Silva, Jordan A ; Fortin, Bridget M ; Lowey, Connor A ; Hale, Allison L ; Kurz, Troy L ; Rusing, Jack C ; Goral, Dawn M ; Thompson, Paul ; Johnson, Alec M ; Elson, Daniel J ; Tadros, Roujih ; Gillette, Charisa E ; Coopwood, Carley ; Rausch, Amy L ; Snowbarger, Jeffrey M ; Ramchandran, Ramani</creatorcontrib><description>Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0252233</identifier><identifier>PMID: 34077449</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Angiogenesis ; Angiogenesis inhibitors ; Apoptosis ; Auroral kilometric radiation ; Bevacizumab ; Biology ; Biology and Life Sciences ; Brain cancer ; Brain tumors ; Cancer ; Cancer therapies ; Care and treatment ; Cell death ; Chemotherapy ; Clinical trials ; Computer programs ; CTLA-4 protein ; Cytotoxicity ; Diagnosis ; Direct reduction ; Editing ; Funding ; Glioma ; Gliomas ; Immunotherapy ; Inhibitor drugs ; Lymphocytes ; Lymphocytes T ; Mathematical analysis ; Medicine and Health Sciences ; Metastasis ; Methodology ; Military base closures ; Military bases ; Monoclonal antibodies ; Movement disorders ; Patients ; PD-1 protein ; Proteins ; Radiation ; Software ; Survival ; Targeted cancer therapy ; Temozolomide ; Tumors</subject><ispartof>PloS one, 2021-06, Vol.16 (6), p.e0252233-e0252233</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Dorrell et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Dorrell et al 2021 Dorrell et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-9d46052b179c49b52701dee3283b247dde7f7a4dd975a59bec6157f69f16a1613</citedby><cites>FETCH-LOGICAL-c669t-9d46052b179c49b52701dee3283b247dde7f7a4dd975a59bec6157f69f16a1613</cites><orcidid>0000-0002-7258-6288 ; 0000-0001-9080-6443 ; 0000-0002-8666-6975 ; 0000-0001-9528-0970 ; 0000-0003-3236-8726 ; 0000-0002-3920-9069</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172048/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172048/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Ramchandran, Ramani</contributor><creatorcontrib>Dorrell, Michael I</creatorcontrib><creatorcontrib>Kast-Woelbern, Heidi R</creatorcontrib><creatorcontrib>Botts, Ryan T</creatorcontrib><creatorcontrib>Bravo, Stephen A</creatorcontrib><creatorcontrib>Tremblay, Jacob R</creatorcontrib><creatorcontrib>Giles, Sarah</creatorcontrib><creatorcontrib>Wada, Jessica F</creatorcontrib><creatorcontrib>Alexander, MaryAnn</creatorcontrib><creatorcontrib>Garcia, Eric</creatorcontrib><creatorcontrib>Villegas, Gabriel</creatorcontrib><creatorcontrib>Booth, Caylor B</creatorcontrib><creatorcontrib>Purington, Kaitlyn J</creatorcontrib><creatorcontrib>Everett, Haylie M</creatorcontrib><creatorcontrib>Siles, Erik N</creatorcontrib><creatorcontrib>Wheelock, Michael</creatorcontrib><creatorcontrib>Silva, Jordan A</creatorcontrib><creatorcontrib>Fortin, Bridget M</creatorcontrib><creatorcontrib>Lowey, Connor A</creatorcontrib><creatorcontrib>Hale, Allison L</creatorcontrib><creatorcontrib>Kurz, Troy L</creatorcontrib><creatorcontrib>Rusing, Jack C</creatorcontrib><creatorcontrib>Goral, Dawn M</creatorcontrib><creatorcontrib>Thompson, Paul</creatorcontrib><creatorcontrib>Johnson, Alec M</creatorcontrib><creatorcontrib>Elson, Daniel J</creatorcontrib><creatorcontrib>Tadros, Roujih</creatorcontrib><creatorcontrib>Gillette, Charisa E</creatorcontrib><creatorcontrib>Coopwood, Carley</creatorcontrib><creatorcontrib>Rausch, Amy L</creatorcontrib><creatorcontrib>Snowbarger, Jeffrey M</creatorcontrib><title>A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis</title><title>PloS one</title><description>Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.</description><subject>Angiogenesis</subject><subject>Angiogenesis inhibitors</subject><subject>Apoptosis</subject><subject>Auroral kilometric radiation</subject><subject>Bevacizumab</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Cell death</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Computer programs</subject><subject>CTLA-4 protein</subject><subject>Cytotoxicity</subject><subject>Diagnosis</subject><subject>Direct reduction</subject><subject>Editing</subject><subject>Funding</subject><subject>Glioma</subject><subject>Gliomas</subject><subject>Immunotherapy</subject><subject>Inhibitor drugs</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mathematical analysis</subject><subject>Medicine and Health Sciences</subject><subject>Metastasis</subject><subject>Methodology</subject><subject>Military base closures</subject><subject>Military bases</subject><subject>Monoclonal antibodies</subject><subject>Movement disorders</subject><subject>Patients</subject><subject>PD-1 protein</subject><subject>Proteins</subject><subject>Radiation</subject><subject>Software</subject><subject>Survival</subject><subject>Targeted cancer therapy</subject><subject>Temozolomide</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DQQLguiLXZuHJu2bg-XwYeHgwKe3IU0m3Sxtsibt4vlN_Lamu1Vu5V5IXiTM_OY_mWEmy56jYokIR2-3fgxOdsudd7AscIkxIQ-yc1QTvGC4IA_vvM-yJzFui6IkFWOPszNCC84prc-zX6vc-T10eQ_DxuvcmzyqAOCsa3Pl-8Y6OVjv4uSRrrU-DsmgYm41uMEaCzFvYC-V_Tn2skmMzgfoow2-s_0YcxnzeOsgtDamuNy6jW3s4MNBse2s7-XCOj0q0McELTiINj7NHhnZRXg23xfZ1_fvvlx9XFzffFhfra4XirF6WNSasqLEDeK1onVTYl4gDUBwRRpMudbADZdU65qXsqwbUAyV3LDaICYRQ-Qie3HU3XU-irmrUeCSMEpKTMtErI-E9nIrdsH2MtwKL604GHxohQyptg4EbpSinBpiMKdEYwmkUYaBbirABtdJ63LONjY9aJV6GGR3InrqcXYjWr8XFeK4oFUSeD0LBP99hDiI3kYFXScd-PH476pAqJzQl_-g91c3U61MBVhnfMqrJlGxYoxUCSomreU9VDoaeqvSCBqb7CcBb04CEjPAj6GVY4xi_fnT_7M3307ZV3fYDchu2ETfjYchPQXpEVTBxxjA_G0yKsS0QX-6IaYNEvMGkd_j7BCH</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Dorrell, Michael I</creator><creator>Kast-Woelbern, Heidi R</creator><creator>Botts, Ryan T</creator><creator>Bravo, Stephen A</creator><creator>Tremblay, Jacob R</creator><creator>Giles, Sarah</creator><creator>Wada, Jessica F</creator><creator>Alexander, MaryAnn</creator><creator>Garcia, Eric</creator><creator>Villegas, Gabriel</creator><creator>Booth, Caylor B</creator><creator>Purington, Kaitlyn J</creator><creator>Everett, Haylie M</creator><creator>Siles, Erik N</creator><creator>Wheelock, Michael</creator><creator>Silva, Jordan A</creator><creator>Fortin, Bridget M</creator><creator>Lowey, Connor A</creator><creator>Hale, Allison L</creator><creator>Kurz, Troy L</creator><creator>Rusing, Jack C</creator><creator>Goral, Dawn M</creator><creator>Thompson, Paul</creator><creator>Johnson, Alec M</creator><creator>Elson, Daniel J</creator><creator>Tadros, Roujih</creator><creator>Gillette, Charisa E</creator><creator>Coopwood, Carley</creator><creator>Rausch, Amy L</creator><creator>Snowbarger, Jeffrey M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7258-6288</orcidid><orcidid>https://orcid.org/0000-0001-9080-6443</orcidid><orcidid>https://orcid.org/0000-0002-8666-6975</orcidid><orcidid>https://orcid.org/0000-0001-9528-0970</orcidid><orcidid>https://orcid.org/0000-0003-3236-8726</orcidid><orcidid>https://orcid.org/0000-0002-3920-9069</orcidid></search><sort><creationdate>20210602</creationdate><title>A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis</title><author>Dorrell, Michael I ; Kast-Woelbern, Heidi R ; Botts, Ryan T ; Bravo, Stephen A ; Tremblay, Jacob R ; Giles, Sarah ; Wada, Jessica F ; Alexander, MaryAnn ; Garcia, Eric ; Villegas, Gabriel ; Booth, Caylor B ; Purington, Kaitlyn J ; Everett, Haylie M ; Siles, Erik N ; Wheelock, Michael ; Silva, Jordan A ; Fortin, Bridget M ; Lowey, Connor A ; Hale, Allison L ; Kurz, Troy L ; Rusing, Jack C ; Goral, Dawn M ; Thompson, Paul ; Johnson, Alec M ; Elson, Daniel J ; Tadros, Roujih ; Gillette, Charisa E ; Coopwood, Carley ; Rausch, Amy L ; Snowbarger, Jeffrey M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-9d46052b179c49b52701dee3283b247dde7f7a4dd975a59bec6157f69f16a1613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angiogenesis</topic><topic>Angiogenesis inhibitors</topic><topic>Apoptosis</topic><topic>Auroral kilometric radiation</topic><topic>Bevacizumab</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Cell death</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Computer programs</topic><topic>CTLA-4 protein</topic><topic>Cytotoxicity</topic><topic>Diagnosis</topic><topic>Direct reduction</topic><topic>Editing</topic><topic>Funding</topic><topic>Glioma</topic><topic>Gliomas</topic><topic>Immunotherapy</topic><topic>Inhibitor drugs</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mathematical analysis</topic><topic>Medicine and Health Sciences</topic><topic>Metastasis</topic><topic>Methodology</topic><topic>Military base closures</topic><topic>Military bases</topic><topic>Monoclonal antibodies</topic><topic>Movement disorders</topic><topic>Patients</topic><topic>PD-1 protein</topic><topic>Proteins</topic><topic>Radiation</topic><topic>Software</topic><topic>Survival</topic><topic>Targeted cancer therapy</topic><topic>Temozolomide</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorrell, Michael I</creatorcontrib><creatorcontrib>Kast-Woelbern, Heidi R</creatorcontrib><creatorcontrib>Botts, Ryan T</creatorcontrib><creatorcontrib>Bravo, Stephen A</creatorcontrib><creatorcontrib>Tremblay, Jacob R</creatorcontrib><creatorcontrib>Giles, Sarah</creatorcontrib><creatorcontrib>Wada, Jessica F</creatorcontrib><creatorcontrib>Alexander, MaryAnn</creatorcontrib><creatorcontrib>Garcia, Eric</creatorcontrib><creatorcontrib>Villegas, Gabriel</creatorcontrib><creatorcontrib>Booth, Caylor B</creatorcontrib><creatorcontrib>Purington, Kaitlyn J</creatorcontrib><creatorcontrib>Everett, Haylie M</creatorcontrib><creatorcontrib>Siles, Erik N</creatorcontrib><creatorcontrib>Wheelock, Michael</creatorcontrib><creatorcontrib>Silva, Jordan A</creatorcontrib><creatorcontrib>Fortin, Bridget M</creatorcontrib><creatorcontrib>Lowey, Connor A</creatorcontrib><creatorcontrib>Hale, Allison L</creatorcontrib><creatorcontrib>Kurz, Troy L</creatorcontrib><creatorcontrib>Rusing, Jack C</creatorcontrib><creatorcontrib>Goral, Dawn M</creatorcontrib><creatorcontrib>Thompson, Paul</creatorcontrib><creatorcontrib>Johnson, Alec M</creatorcontrib><creatorcontrib>Elson, Daniel J</creatorcontrib><creatorcontrib>Tadros, Roujih</creatorcontrib><creatorcontrib>Gillette, Charisa E</creatorcontrib><creatorcontrib>Coopwood, Carley</creatorcontrib><creatorcontrib>Rausch, Amy L</creatorcontrib><creatorcontrib>Snowbarger, Jeffrey M</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorrell, Michael I</au><au>Kast-Woelbern, Heidi R</au><au>Botts, Ryan T</au><au>Bravo, Stephen A</au><au>Tremblay, Jacob R</au><au>Giles, Sarah</au><au>Wada, Jessica F</au><au>Alexander, MaryAnn</au><au>Garcia, Eric</au><au>Villegas, Gabriel</au><au>Booth, Caylor B</au><au>Purington, Kaitlyn J</au><au>Everett, Haylie M</au><au>Siles, Erik N</au><au>Wheelock, Michael</au><au>Silva, Jordan A</au><au>Fortin, Bridget M</au><au>Lowey, Connor A</au><au>Hale, Allison L</au><au>Kurz, Troy L</au><au>Rusing, Jack C</au><au>Goral, Dawn M</au><au>Thompson, Paul</au><au>Johnson, Alec M</au><au>Elson, Daniel J</au><au>Tadros, Roujih</au><au>Gillette, Charisa E</au><au>Coopwood, Carley</au><au>Rausch, Amy L</au><au>Snowbarger, Jeffrey M</au><au>Ramchandran, Ramani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis</atitle><jtitle>PloS one</jtitle><date>2021-06-02</date><risdate>2021</risdate><volume>16</volume><issue>6</issue><spage>e0252233</spage><epage>e0252233</epage><pages>e0252233-e0252233</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34077449</pmid><doi>10.1371/journal.pone.0252233</doi><tpages>e0252233</tpages><orcidid>https://orcid.org/0000-0002-7258-6288</orcidid><orcidid>https://orcid.org/0000-0001-9080-6443</orcidid><orcidid>https://orcid.org/0000-0002-8666-6975</orcidid><orcidid>https://orcid.org/0000-0001-9528-0970</orcidid><orcidid>https://orcid.org/0000-0003-3236-8726</orcidid><orcidid>https://orcid.org/0000-0002-3920-9069</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-06, Vol.16 (6), p.e0252233-e0252233 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2536435245 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Angiogenesis Angiogenesis inhibitors Apoptosis Auroral kilometric radiation Bevacizumab Biology Biology and Life Sciences Brain cancer Brain tumors Cancer Cancer therapies Care and treatment Cell death Chemotherapy Clinical trials Computer programs CTLA-4 protein Cytotoxicity Diagnosis Direct reduction Editing Funding Glioma Gliomas Immunotherapy Inhibitor drugs Lymphocytes Lymphocytes T Mathematical analysis Medicine and Health Sciences Metastasis Methodology Military base closures Military bases Monoclonal antibodies Movement disorders Patients PD-1 protein Proteins Radiation Software Survival Targeted cancer therapy Temozolomide Tumors |
title | A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20of%20screening%20combinations%20of%20angiostatics%20identifies%20bevacizumab%20and%20temsirolimus%20as%20synergistic%20inhibitors%20of%20glioma-induced%20angiogenesis&rft.jtitle=PloS%20one&rft.au=Dorrell,%20Michael%20I&rft.date=2021-06-02&rft.volume=16&rft.issue=6&rft.spage=e0252233&rft.epage=e0252233&rft.pages=e0252233-e0252233&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0252233&rft_dat=%3Cgale_plos_%3EA663852408%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2536435245&rft_id=info:pmid/34077449&rft_galeid=A663852408&rft_doaj_id=oai_doaj_org_article_2bcc474f3f2743d2ae3bcf6edb8e2f29&rfr_iscdi=true |