Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p
Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-05, Vol.16 (5), p.e0247285-e0247285 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0247285 |
---|---|
container_issue | 5 |
container_start_page | e0247285 |
container_title | PloS one |
container_volume | 16 |
creator | Stewart, Taylor Wolfe, Benjamin E Fuchs, Stephen M |
description | Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function. |
doi_str_mv | 10.1371/journal.pone.0247285 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2530363017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662543311</galeid><doaj_id>oai_doaj_org_article_0002297a7ae142618bb2fdd44238bd30</doaj_id><sourcerecordid>A662543311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c669t-a30cfdf9f8ad7a1f876a24f118d6aa68ab7a2fd561cc5e5b3800d7c712d1314e3</originalsourceid><addsrcrecordid>eNqNk9-L1DAQx4so3rn6HwgWBNGHXfOjTdsXYTl_LRwceOprmKaTbo5u0kvaw_OvN7vbk6vcg-QhYeYz38kMM0nykpIV5QV9f-VGb6Fb9c7iirCsYGX-KDmlFWdLwQh_fO99kjwL4YqQnJdCPE1OeEZolfPqNMGPqI01tk2HLabedZg6fXj3rruF0IOH1tjowh5hSBu3A2PvmMtVqtDjjQkGMB082KC86QfjbKpBDc6n69-a9s-TJxq6gC-me5H8-Pzp-9nX5fnFl83Z-nyphKiGJXCidKMrXUJTANVlIYBlmtKyEQCihLoApptcUKVyzGteEtIUqqCsoZxmyBfJq6Nu37kgpw4FyXJOuOCEFpHYHInGwZXsvdmBv5UOjDwYnG8l-MGoDiUhhLGqgAKQZkzQsq5j8ibLGC_rJioukg9TtrHeYaPQxg50M9G5x5qtbN2NLCmvckqjwNtJwLvrEcMgdyYo7Dqw6MbDvykjVawvoq__QR-ubqJaiAUYq13Mq_aici0EyzPOD2lXD1DxNLgzKo6TNtE-C3g3C4jMgL-GFsYQ5Oby2_-zFz_n7Jt77BahG7bBdeN-fsIczI6g8i4Ej_pvkymR-22464bcb4OctoH_AUYy-nY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2530363017</pqid></control><display><type>article</type><title>Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Stewart, Taylor ; Wolfe, Benjamin E ; Fuchs, Stephen M</creator><contributor>Galli, Alvaro</contributor><creatorcontrib>Stewart, Taylor ; Wolfe, Benjamin E ; Fuchs, Stephen M ; Galli, Alvaro</creatorcontrib><description>Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0247285</identifier><identifier>PMID: 34019539</identifier><language>eng</language><publisher>San Francisco: Public Library of Science</publisher><subject>Age ; Analysis ; Biology ; Biology and Life Sciences ; Brewer's yeast ; Chromatin ; Divergence ; Domains ; Editing ; Environmental stress ; Food production ; Gene expression ; Glycerol ; Infectious diseases ; Investigations ; Mammals ; Methodology ; Neurodegeneration ; Physical Sciences ; Plasmids ; Prion protein ; Prions ; Proteins ; Proteomes ; Reading ; Research and Analysis Methods ; Reviews ; Yeast ; Yeasts</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0247285-e0247285</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Stewart et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Stewart et al 2021 Stewart et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c669t-a30cfdf9f8ad7a1f876a24f118d6aa68ab7a2fd561cc5e5b3800d7c712d1314e3</citedby><cites>FETCH-LOGICAL-c669t-a30cfdf9f8ad7a1f876a24f118d6aa68ab7a2fd561cc5e5b3800d7c712d1314e3</cites><orcidid>0000-0001-7261-9214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139511/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8139511/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids></links><search><contributor>Galli, Alvaro</contributor><creatorcontrib>Stewart, Taylor</creatorcontrib><creatorcontrib>Wolfe, Benjamin E</creatorcontrib><creatorcontrib>Fuchs, Stephen M</creatorcontrib><title>Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p</title><title>PloS one</title><description>Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function.</description><subject>Age</subject><subject>Analysis</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Brewer's yeast</subject><subject>Chromatin</subject><subject>Divergence</subject><subject>Domains</subject><subject>Editing</subject><subject>Environmental stress</subject><subject>Food production</subject><subject>Gene expression</subject><subject>Glycerol</subject><subject>Infectious diseases</subject><subject>Investigations</subject><subject>Mammals</subject><subject>Methodology</subject><subject>Neurodegeneration</subject><subject>Physical Sciences</subject><subject>Plasmids</subject><subject>Prion protein</subject><subject>Prions</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Reading</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-L1DAQx4so3rn6HwgWBNGHXfOjTdsXYTl_LRwceOprmKaTbo5u0kvaw_OvN7vbk6vcg-QhYeYz38kMM0nykpIV5QV9f-VGb6Fb9c7iirCsYGX-KDmlFWdLwQh_fO99kjwL4YqQnJdCPE1OeEZolfPqNMGPqI01tk2HLabedZg6fXj3rruF0IOH1tjowh5hSBu3A2PvmMtVqtDjjQkGMB082KC86QfjbKpBDc6n69-a9s-TJxq6gC-me5H8-Pzp-9nX5fnFl83Z-nyphKiGJXCidKMrXUJTANVlIYBlmtKyEQCihLoApptcUKVyzGteEtIUqqCsoZxmyBfJq6Nu37kgpw4FyXJOuOCEFpHYHInGwZXsvdmBv5UOjDwYnG8l-MGoDiUhhLGqgAKQZkzQsq5j8ibLGC_rJioukg9TtrHeYaPQxg50M9G5x5qtbN2NLCmvckqjwNtJwLvrEcMgdyYo7Dqw6MbDvykjVawvoq__QR-ubqJaiAUYq13Mq_aici0EyzPOD2lXD1DxNLgzKo6TNtE-C3g3C4jMgL-GFsYQ5Oby2_-zFz_n7Jt77BahG7bBdeN-fsIczI6g8i4Ej_pvkymR-22464bcb4OctoH_AUYy-nY</recordid><startdate>20210521</startdate><enddate>20210521</enddate><creator>Stewart, Taylor</creator><creator>Wolfe, Benjamin E</creator><creator>Fuchs, Stephen M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7261-9214</orcidid></search><sort><creationdate>20210521</creationdate><title>Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p</title><author>Stewart, Taylor ; Wolfe, Benjamin E ; Fuchs, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c669t-a30cfdf9f8ad7a1f876a24f118d6aa68ab7a2fd561cc5e5b3800d7c712d1314e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Analysis</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Brewer's yeast</topic><topic>Chromatin</topic><topic>Divergence</topic><topic>Domains</topic><topic>Editing</topic><topic>Environmental stress</topic><topic>Food production</topic><topic>Gene expression</topic><topic>Glycerol</topic><topic>Infectious diseases</topic><topic>Investigations</topic><topic>Mammals</topic><topic>Methodology</topic><topic>Neurodegeneration</topic><topic>Physical Sciences</topic><topic>Plasmids</topic><topic>Prion protein</topic><topic>Prions</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Reading</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stewart, Taylor</creatorcontrib><creatorcontrib>Wolfe, Benjamin E</creatorcontrib><creatorcontrib>Fuchs, Stephen M</creatorcontrib><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stewart, Taylor</au><au>Wolfe, Benjamin E</au><au>Fuchs, Stephen M</au><au>Galli, Alvaro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p</atitle><jtitle>PloS one</jtitle><date>2021-05-21</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0247285</spage><epage>e0247285</epage><pages>e0247285-e0247285</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Across eukaryotes, homopolymeric repeats of amino acids are enriched in regulatory proteins such as transcription factors and chromatin remodelers. These domains play important roles in signaling, binding, prion formation, and functional phase separation. Azf1p is a prion-forming yeast transcription factor that contains two homorepeat domains, a polyglutamine and a polyasparagine domain. In this work, we report a new phenotype for Azf1p and identify a large set of genes that are regulated by Azf1p during growth in glucose. We show that the polyasparagine (polyN) domain plays a subtle role in transcription but is dispensable for Azf1p localization and prion formation. Genes upregulated upon deletion of the polyN domain are enriched in functions related to carbon metabolism and storage. This domain may therefore be a useful target for engineering yeast strains for fermentation applications and small molecule production. We also report that both the polyasparagine and polyglutamine domains vary in length across strains of S. cerevisiae and propose a model for how this variation may impact protein function.</abstract><cop>San Francisco</cop><pub>Public Library of Science</pub><pmid>34019539</pmid><doi>10.1371/journal.pone.0247285</doi><tpages>e0247285</tpages><orcidid>https://orcid.org/0000-0001-7261-9214</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0247285-e0247285 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2530363017 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Age Analysis Biology Biology and Life Sciences Brewer's yeast Chromatin Divergence Domains Editing Environmental stress Food production Gene expression Glycerol Infectious diseases Investigations Mammals Methodology Neurodegeneration Physical Sciences Plasmids Prion protein Prions Proteins Proteomes Reading Research and Analysis Methods Reviews Yeast Yeasts |
title | Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T04%3A52%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20role%20of%20the%20polyasparagine%20repeat%20domain%20of%20the%20S.%20cerevisiae%20transcription%20factor%20Azf1p&rft.jtitle=PloS%20one&rft.au=Stewart,%20Taylor&rft.date=2021-05-21&rft.volume=16&rft.issue=5&rft.spage=e0247285&rft.epage=e0247285&rft.pages=e0247285-e0247285&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0247285&rft_dat=%3Cgale_plos_%3EA662543311%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2530363017&rft_id=info:pmid/34019539&rft_galeid=A662543311&rft_doaj_id=oai_doaj_org_article_0002297a7ae142618bb2fdd44238bd30&rfr_iscdi=true |