Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment
Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbe...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-05, Vol.16 (5), p.e0251883-e0251883 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0251883 |
---|---|
container_issue | 5 |
container_start_page | e0251883 |
container_title | PloS one |
container_volume | 16 |
creator | Flynn, Theodore M Antonopoulos, Dionysios A Skinner, Kelly A Brulc, Jennifer M Johnston, Eric Boyanov, Maxim I Kwon, Man Jae Kemner, Kenneth M O'Loughlin, Edward J |
description | Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions. |
doi_str_mv | 10.1371/journal.pone.0251883 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2529909759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662418915</galeid><doaj_id>oai_doaj_org_article_5c1e8f7168cf4c558d4c192a58046795</doaj_id><sourcerecordid>A662418915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c719t-e67e0d4408cad382460117f97a9c55776a62455f245f4bb6412f8c433b3e96703</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1Ba00JpL3YrWbION4U09BAIBHq6FVppvKsgSxtLDt1n6EtXzm5CtuSiGOxh_M0_mtFMVT3HaI4Jx-8v4jgE7efrGGCOmhYLQR5Uh1iSZsYaRB7esQ-qJyldINQSwdjj6oBQhKkU6LD689HFJUSzgt4Z7Wu7CbpYqdbB1sUY4sIVt4l9PwaXN7WFK_Bx3UPI9RgsDHUafaczzK5D3BDDbAA7GheWJSxYl10MqV7oBLaOoQYPJheqTqsxZw-1Llp20ntaPeq0T_Bs9z2qfn7-9OPk6-zs_MvpyfHZzHAs8wwYB2QpRcJoS0RDGcKYd5JradqWc6ZZQ9u2K6-OLhaM4qYThhKyICAZR-SoernVXfuY1K6PSTVtIyWSvJWFON0SNuoLtR5cr4eNitqpa0cclkoP2RkPqjUYRMcxE6ajJb-w1GDZ6FYgyrhsi9aHXbZx0YM1pdBB-z3R_T_BrdQyXimBCWNcFIFXW4GYslPJuAxmVTobSh8V5qIllBfo7S7LEC9HSFn1LhnwXgeI41QcwU3DiJz0Xv-D3t-CHbXUpUoXulgOZyZRdcxKg7GQeCpufg9VHjvNU5nMzhX_XsC7vYDCZPidl3pMSZ1-__b_7PmvffbNHXYF2udVin68Hr59kG7BMtopDdDd3gRGalqsm26oabHUbrFK2Iu7t3gbdLNJ5C8rYB6c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529909759</pqid></control><display><type>article</type><title>Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Flynn, Theodore M ; Antonopoulos, Dionysios A ; Skinner, Kelly A ; Brulc, Jennifer M ; Johnston, Eric ; Boyanov, Maxim I ; Kwon, Man Jae ; Kemner, Kenneth M ; O'Loughlin, Edward J</creator><creatorcontrib>Flynn, Theodore M ; Antonopoulos, Dionysios A ; Skinner, Kelly A ; Brulc, Jennifer M ; Johnston, Eric ; Boyanov, Maxim I ; Kwon, Man Jae ; Kemner, Kenneth M ; O'Loughlin, Edward J ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251883</identifier><identifier>PMID: 34014980</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analogs ; Anthraquinone ; Anthraquinones ; AQDS ; Aquatic environment ; Aquatic microorganisms ; Bacteria ; BASIC BIOLOGICAL SCIENCES ; Biogeochemistry ; Biology and Life Sciences ; Carbon cycle ; Chemical engineering ; Chemical reactions ; Community development ; Data analysis ; Desulfosporosinus ; Earth Sciences ; Ecology and Environmental Sciences ; Editing ; Electric properties ; electron shuttles ; Electrons ; Environmental aspects ; Environmental science ; Fruits ; Geobacter ; Humic substances ; Iron ; Iron compounds ; iron reduction ; Laboratories ; Methodology ; Microorganisms ; Minerals ; Nitrates ; Physical Sciences ; Properties ; Quinones ; Redox properties ; Redox reactions ; Reduction ; Research and Analysis Methods ; Reviews ; Sediments (Geology) ; Sulfates ; Sulfur ; Terrestrial environments ; Water resources</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0251883-e0251883</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Flynn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Flynn et al 2021 Flynn et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c719t-e67e0d4408cad382460117f97a9c55776a62455f245f4bb6412f8c433b3e96703</citedby><cites>FETCH-LOGICAL-c719t-e67e0d4408cad382460117f97a9c55776a62455f245f4bb6412f8c433b3e96703</cites><orcidid>0000-0001-8758-5248 ; 0000-0003-1607-9529 ; 0000000316079529 ; 0000000187585248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136678/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8136678/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34014980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1785347$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Flynn, Theodore M</creatorcontrib><creatorcontrib>Antonopoulos, Dionysios A</creatorcontrib><creatorcontrib>Skinner, Kelly A</creatorcontrib><creatorcontrib>Brulc, Jennifer M</creatorcontrib><creatorcontrib>Johnston, Eric</creatorcontrib><creatorcontrib>Boyanov, Maxim I</creatorcontrib><creatorcontrib>Kwon, Man Jae</creatorcontrib><creatorcontrib>Kemner, Kenneth M</creatorcontrib><creatorcontrib>O'Loughlin, Edward J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.</description><subject>Analogs</subject><subject>Anthraquinone</subject><subject>Anthraquinones</subject><subject>AQDS</subject><subject>Aquatic environment</subject><subject>Aquatic microorganisms</subject><subject>Bacteria</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biogeochemistry</subject><subject>Biology and Life Sciences</subject><subject>Carbon cycle</subject><subject>Chemical engineering</subject><subject>Chemical reactions</subject><subject>Community development</subject><subject>Data analysis</subject><subject>Desulfosporosinus</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Editing</subject><subject>Electric properties</subject><subject>electron shuttles</subject><subject>Electrons</subject><subject>Environmental aspects</subject><subject>Environmental science</subject><subject>Fruits</subject><subject>Geobacter</subject><subject>Humic substances</subject><subject>Iron</subject><subject>Iron compounds</subject><subject>iron reduction</subject><subject>Laboratories</subject><subject>Methodology</subject><subject>Microorganisms</subject><subject>Minerals</subject><subject>Nitrates</subject><subject>Physical Sciences</subject><subject>Properties</subject><subject>Quinones</subject><subject>Redox properties</subject><subject>Redox reactions</subject><subject>Reduction</subject><subject>Research and Analysis Methods</subject><subject>Reviews</subject><subject>Sediments (Geology)</subject><subject>Sulfates</subject><subject>Sulfur</subject><subject>Terrestrial environments</subject><subject>Water resources</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1Ba00JpL3YrWbION4U09BAIBHq6FVppvKsgSxtLDt1n6EtXzm5CtuSiGOxh_M0_mtFMVT3HaI4Jx-8v4jgE7efrGGCOmhYLQR5Uh1iSZsYaRB7esQ-qJyldINQSwdjj6oBQhKkU6LD689HFJUSzgt4Z7Wu7CbpYqdbB1sUY4sIVt4l9PwaXN7WFK_Bx3UPI9RgsDHUafaczzK5D3BDDbAA7GheWJSxYl10MqV7oBLaOoQYPJheqTqsxZw-1Llp20ntaPeq0T_Bs9z2qfn7-9OPk6-zs_MvpyfHZzHAs8wwYB2QpRcJoS0RDGcKYd5JradqWc6ZZQ9u2K6-OLhaM4qYThhKyICAZR-SoernVXfuY1K6PSTVtIyWSvJWFON0SNuoLtR5cr4eNitqpa0cclkoP2RkPqjUYRMcxE6ajJb-w1GDZ6FYgyrhsi9aHXbZx0YM1pdBB-z3R_T_BrdQyXimBCWNcFIFXW4GYslPJuAxmVTobSh8V5qIllBfo7S7LEC9HSFn1LhnwXgeI41QcwU3DiJz0Xv-D3t-CHbXUpUoXulgOZyZRdcxKg7GQeCpufg9VHjvNU5nMzhX_XsC7vYDCZPidl3pMSZ1-__b_7PmvffbNHXYF2udVin68Hr59kG7BMtopDdDd3gRGalqsm26oabHUbrFK2Iu7t3gbdLNJ5C8rYB6c</recordid><startdate>20210520</startdate><enddate>20210520</enddate><creator>Flynn, Theodore M</creator><creator>Antonopoulos, Dionysios A</creator><creator>Skinner, Kelly A</creator><creator>Brulc, Jennifer M</creator><creator>Johnston, Eric</creator><creator>Boyanov, Maxim I</creator><creator>Kwon, Man Jae</creator><creator>Kemner, Kenneth M</creator><creator>O'Loughlin, Edward J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8758-5248</orcidid><orcidid>https://orcid.org/0000-0003-1607-9529</orcidid><orcidid>https://orcid.org/0000000316079529</orcidid><orcidid>https://orcid.org/0000000187585248</orcidid></search><sort><creationdate>20210520</creationdate><title>Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment</title><author>Flynn, Theodore M ; Antonopoulos, Dionysios A ; Skinner, Kelly A ; Brulc, Jennifer M ; Johnston, Eric ; Boyanov, Maxim I ; Kwon, Man Jae ; Kemner, Kenneth M ; O'Loughlin, Edward J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c719t-e67e0d4408cad382460117f97a9c55776a62455f245f4bb6412f8c433b3e96703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analogs</topic><topic>Anthraquinone</topic><topic>Anthraquinones</topic><topic>AQDS</topic><topic>Aquatic environment</topic><topic>Aquatic microorganisms</topic><topic>Bacteria</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biogeochemistry</topic><topic>Biology and Life Sciences</topic><topic>Carbon cycle</topic><topic>Chemical engineering</topic><topic>Chemical reactions</topic><topic>Community development</topic><topic>Data analysis</topic><topic>Desulfosporosinus</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Editing</topic><topic>Electric properties</topic><topic>electron shuttles</topic><topic>Electrons</topic><topic>Environmental aspects</topic><topic>Environmental science</topic><topic>Fruits</topic><topic>Geobacter</topic><topic>Humic substances</topic><topic>Iron</topic><topic>Iron compounds</topic><topic>iron reduction</topic><topic>Laboratories</topic><topic>Methodology</topic><topic>Microorganisms</topic><topic>Minerals</topic><topic>Nitrates</topic><topic>Physical Sciences</topic><topic>Properties</topic><topic>Quinones</topic><topic>Redox properties</topic><topic>Redox reactions</topic><topic>Reduction</topic><topic>Research and Analysis Methods</topic><topic>Reviews</topic><topic>Sediments (Geology)</topic><topic>Sulfates</topic><topic>Sulfur</topic><topic>Terrestrial environments</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flynn, Theodore M</creatorcontrib><creatorcontrib>Antonopoulos, Dionysios A</creatorcontrib><creatorcontrib>Skinner, Kelly A</creatorcontrib><creatorcontrib>Brulc, Jennifer M</creatorcontrib><creatorcontrib>Johnston, Eric</creatorcontrib><creatorcontrib>Boyanov, Maxim I</creatorcontrib><creatorcontrib>Kwon, Man Jae</creatorcontrib><creatorcontrib>Kemner, Kenneth M</creatorcontrib><creatorcontrib>O'Loughlin, Edward J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flynn, Theodore M</au><au>Antonopoulos, Dionysios A</au><au>Skinner, Kelly A</au><au>Brulc, Jennifer M</au><au>Johnston, Eric</au><au>Boyanov, Maxim I</au><au>Kwon, Man Jae</au><au>Kemner, Kenneth M</au><au>O'Loughlin, Edward J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-20</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0251883</spage><epage>e0251883</epage><pages>e0251883-e0251883</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Iron reduction and sulfate reduction are two of the major biogeochemical processes that occur in anoxic sediments. Microbes that catalyze these reactions are therefore some of the most abundant organisms in the subsurface, and some of the most important. Due to the variety of mechanisms that microbes employ to derive energy from these reactions, including the use of soluble electron shuttles, the dynamics between iron- and sulfate-reducing populations under changing biogeochemical conditions still elude complete characterization. Here, we amended experimental bioreactors comprised of freshwater aquifer sediment with ferric iron, sulfate, acetate, and the model electron shuttle AQDS (9,10-anthraquinone-2,6-disulfonate) and monitored both the changing redox conditions as well as changes in the microbial community over time. The addition of the electron shuttle AQDS did increase the initial rate of FeIII reduction; however, it had little effect on the composition of the microbial community. Our results show that in both AQDS- and AQDS+ systems there was an initial dominance of organisms classified as Geobacter (a genus of dissimilatory FeIII-reducing bacteria), after which sequences classified as Desulfosporosinus (a genus of dissimilatory sulfate-reducing bacteria) came to dominate both experimental systems. Furthermore, most of the ferric iron reduction occurred under this later, ostensibly "sulfate-reducing" phase of the experiment. This calls into question the usefulness of classifying subsurface sediments by the dominant microbial process alone because of their interrelated biogeochemical consequences. To better inform models of microbially-catalyzed subsurface processes, such interactions must be more thoroughly understood under a broad range of conditions.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>34014980</pmid><doi>10.1371/journal.pone.0251883</doi><tpages>e0251883</tpages><orcidid>https://orcid.org/0000-0001-8758-5248</orcidid><orcidid>https://orcid.org/0000-0003-1607-9529</orcidid><orcidid>https://orcid.org/0000000316079529</orcidid><orcidid>https://orcid.org/0000000187585248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0251883-e0251883 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2529909759 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Analogs Anthraquinone Anthraquinones AQDS Aquatic environment Aquatic microorganisms Bacteria BASIC BIOLOGICAL SCIENCES Biogeochemistry Biology and Life Sciences Carbon cycle Chemical engineering Chemical reactions Community development Data analysis Desulfosporosinus Earth Sciences Ecology and Environmental Sciences Editing Electric properties electron shuttles Electrons Environmental aspects Environmental science Fruits Geobacter Humic substances Iron Iron compounds iron reduction Laboratories Methodology Microorganisms Minerals Nitrates Physical Sciences Properties Quinones Redox properties Redox reactions Reduction Research and Analysis Methods Reviews Sediments (Geology) Sulfates Sulfur Terrestrial environments Water resources |
title | Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biogeochemical%20dynamics%20and%20microbial%20community%20development%20under%20sulfate-%20and%20iron-reducing%20conditions%20based%20on%20electron%20shuttle%20amendment&rft.jtitle=PloS%20one&rft.au=Flynn,%20Theodore%20M&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2021-05-20&rft.volume=16&rft.issue=5&rft.spage=e0251883&rft.epage=e0251883&rft.pages=e0251883-e0251883&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251883&rft_dat=%3Cgale_plos_%3EA662418915%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529909759&rft_id=info:pmid/34014980&rft_galeid=A662418915&rft_doaj_id=oai_doaj_org_article_5c1e8f7168cf4c558d4c192a58046795&rfr_iscdi=true |