Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study

The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-05, Vol.16 (5), p.e0251579-e0251579
Hauptverfasser: Kusner, Jonathan, Luraghi, Giulia, Khodaee, Farhan, Rodriguez Matas, José Félix, Migliavacca, Francesco, Edelman, Elazer R, Nezami, Farhad R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0251579
container_issue 5
container_start_page e0251579
container_title PloS one
container_volume 16
creator Kusner, Jonathan
Luraghi, Giulia
Khodaee, Farhan
Rodriguez Matas, José Félix
Migliavacca, Francesco
Edelman, Elazer R
Nezami, Farhad R
description The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.
doi_str_mv 10.1371/journal.pone.0251579
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528424833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662040667</galeid><doaj_id>oai_doaj_org_article_e1430077fdeb4b6dbe8db8d48cdc7be2</doaj_id><sourcerecordid>A662040667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpLpw5bkXQxC2UegUOja3gpZOk4UHMu15ND8-8lLWpLRi8kXEvLzvsfn-Jwse0vwlDBBvqz80Le6mXa-hSmmBSlE-Sw7JSWjE04xe35wPslehbDCuGCS85fZCWNlWrw8zbqb1kIfom6taxfoenZ7hSxsnAEE951ug_Mt0gG5iHpodISAokdr33dL3_jFFvkaxSWgypkhdM4i7fvoDNroZgNf0QwFtx6SbrQJcbDb19mLWjcB3uz3s-zmx_fr81-Ti8uf8_PZxcTwksZJRTDloiS2qEQlqSUy59wUnFpJKcMcABgQYWVpcCkEL-raCKx1KWxV1KZkZ9n7nW_X-KD2xQqKFlTmNJeMJWK-I6zXK9X1bq37rfLaqb8Xvl8oPebSgAKSM4yFqC1UecVtBdJW0ubSWCMqoMnr2z7aUK3BGmhjr5sj0-M3rVuqhd8oSaikeZ4MPu0Nen83QIhq7YKBptEt-GH33ZLkhOGEfvgHfTq7PbXQKQHX1j7FNaOpmvHUEznmXCRq-gSVHgtrZ1Jn1S7dHwk-HwkSE-E-LvQQgpr_vvp_9vL2mP14wC5BN3EZfDOMjROOwXwHmt6H0EP9WGSC1TgYD9VQ42Co_WAk2bvDH_QoepgE9gfMHQmY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528424833</pqid></control><display><type>article</type><title>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Kusner, Jonathan ; Luraghi, Giulia ; Khodaee, Farhan ; Rodriguez Matas, José Félix ; Migliavacca, Francesco ; Edelman, Elazer R ; Nezami, Farhad R</creator><contributor>Siontis, George C.M.</contributor><creatorcontrib>Kusner, Jonathan ; Luraghi, Giulia ; Khodaee, Farhan ; Rodriguez Matas, José Félix ; Migliavacca, Francesco ; Edelman, Elazer R ; Nezami, Farhad R ; Siontis, George C.M.</creatorcontrib><description>The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251579</identifier><identifier>PMID: 33999969</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aorta ; Aortic valve ; Biology and Life Sciences ; Care and treatment ; Catheters ; Chemical engineering ; Chemistry ; Computer simulation ; Coronary vessels ; Editing ; Engineering and Technology ; Finite element method ; Gas expanders ; Health risks ; Heart valve replacement ; Heart valves ; Laboratories ; Mathematical models ; Mechanics ; Mechanics (physics) ; Medicine and Health Sciences ; Methodology ; Mitral valve ; Morphology ; Orifices ; Patient outcomes ; Pericardium ; Phenotypes ; Phenotypic variations ; Physical Sciences ; Quadrilaterals ; Reviews ; Surgery ; Technology ; Thorax</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0251579-e0251579</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Kusner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Kusner et al 2021 Kusner et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</citedby><cites>FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</cites><orcidid>0000-0001-5872-5037 ; 0000-0003-1466-4345 ; 0000-0002-4210-3177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128244/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128244/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33999969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Siontis, George C.M.</contributor><creatorcontrib>Kusner, Jonathan</creatorcontrib><creatorcontrib>Luraghi, Giulia</creatorcontrib><creatorcontrib>Khodaee, Farhan</creatorcontrib><creatorcontrib>Rodriguez Matas, José Félix</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><creatorcontrib>Edelman, Elazer R</creatorcontrib><creatorcontrib>Nezami, Farhad R</creatorcontrib><title>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.</description><subject>Aorta</subject><subject>Aortic valve</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Catheters</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Coronary vessels</subject><subject>Editing</subject><subject>Engineering and Technology</subject><subject>Finite element method</subject><subject>Gas expanders</subject><subject>Health risks</subject><subject>Heart valve replacement</subject><subject>Heart valves</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Mitral valve</subject><subject>Morphology</subject><subject>Orifices</subject><subject>Patient outcomes</subject><subject>Pericardium</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Physical Sciences</subject><subject>Quadrilaterals</subject><subject>Reviews</subject><subject>Surgery</subject><subject>Technology</subject><subject>Thorax</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpLpw5bkXQxC2UegUOja3gpZOk4UHMu15ND8-8lLWpLRi8kXEvLzvsfn-Jwse0vwlDBBvqz80Le6mXa-hSmmBSlE-Sw7JSWjE04xe35wPslehbDCuGCS85fZCWNlWrw8zbqb1kIfom6taxfoenZ7hSxsnAEE951ug_Mt0gG5iHpodISAokdr33dL3_jFFvkaxSWgypkhdM4i7fvoDNroZgNf0QwFtx6SbrQJcbDb19mLWjcB3uz3s-zmx_fr81-Ti8uf8_PZxcTwksZJRTDloiS2qEQlqSUy59wUnFpJKcMcABgQYWVpcCkEL-raCKx1KWxV1KZkZ9n7nW_X-KD2xQqKFlTmNJeMJWK-I6zXK9X1bq37rfLaqb8Xvl8oPebSgAKSM4yFqC1UecVtBdJW0ubSWCMqoMnr2z7aUK3BGmhjr5sj0-M3rVuqhd8oSaikeZ4MPu0Nen83QIhq7YKBptEt-GH33ZLkhOGEfvgHfTq7PbXQKQHX1j7FNaOpmvHUEznmXCRq-gSVHgtrZ1Jn1S7dHwk-HwkSE-E-LvQQgpr_vvp_9vL2mP14wC5BN3EZfDOMjROOwXwHmt6H0EP9WGSC1TgYD9VQ42Co_WAk2bvDH_QoepgE9gfMHQmY</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Kusner, Jonathan</creator><creator>Luraghi, Giulia</creator><creator>Khodaee, Farhan</creator><creator>Rodriguez Matas, José Félix</creator><creator>Migliavacca, Francesco</creator><creator>Edelman, Elazer R</creator><creator>Nezami, Farhad R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5872-5037</orcidid><orcidid>https://orcid.org/0000-0003-1466-4345</orcidid><orcidid>https://orcid.org/0000-0002-4210-3177</orcidid></search><sort><creationdate>20210517</creationdate><title>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</title><author>Kusner, Jonathan ; Luraghi, Giulia ; Khodaee, Farhan ; Rodriguez Matas, José Félix ; Migliavacca, Francesco ; Edelman, Elazer R ; Nezami, Farhad R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aorta</topic><topic>Aortic valve</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Catheters</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Coronary vessels</topic><topic>Editing</topic><topic>Engineering and Technology</topic><topic>Finite element method</topic><topic>Gas expanders</topic><topic>Health risks</topic><topic>Heart valve replacement</topic><topic>Heart valves</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Mitral valve</topic><topic>Morphology</topic><topic>Orifices</topic><topic>Patient outcomes</topic><topic>Pericardium</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Physical Sciences</topic><topic>Quadrilaterals</topic><topic>Reviews</topic><topic>Surgery</topic><topic>Technology</topic><topic>Thorax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusner, Jonathan</creatorcontrib><creatorcontrib>Luraghi, Giulia</creatorcontrib><creatorcontrib>Khodaee, Farhan</creatorcontrib><creatorcontrib>Rodriguez Matas, José Félix</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><creatorcontrib>Edelman, Elazer R</creatorcontrib><creatorcontrib>Nezami, Farhad R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusner, Jonathan</au><au>Luraghi, Giulia</au><au>Khodaee, Farhan</au><au>Rodriguez Matas, José Félix</au><au>Migliavacca, Francesco</au><au>Edelman, Elazer R</au><au>Nezami, Farhad R</au><au>Siontis, George C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0251579</spage><epage>e0251579</epage><pages>e0251579-e0251579</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33999969</pmid><doi>10.1371/journal.pone.0251579</doi><tpages>e0251579</tpages><orcidid>https://orcid.org/0000-0001-5872-5037</orcidid><orcidid>https://orcid.org/0000-0003-1466-4345</orcidid><orcidid>https://orcid.org/0000-0002-4210-3177</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-05, Vol.16 (5), p.e0251579-e0251579
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2528424833
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Aorta
Aortic valve
Biology and Life Sciences
Care and treatment
Catheters
Chemical engineering
Chemistry
Computer simulation
Coronary vessels
Editing
Engineering and Technology
Finite element method
Gas expanders
Health risks
Heart valve replacement
Heart valves
Laboratories
Mathematical models
Mechanics
Mechanics (physics)
Medicine and Health Sciences
Methodology
Mitral valve
Morphology
Orifices
Patient outcomes
Pericardium
Phenotypes
Phenotypic variations
Physical Sciences
Quadrilaterals
Reviews
Surgery
Technology
Thorax
title Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20TAVR%20device%20expansion%20as%20it%20relates%20to%20morphology%20of%20the%20bicuspid%20aortic%20valve:%20A%20simulation%20study&rft.jtitle=PloS%20one&rft.au=Kusner,%20Jonathan&rft.date=2021-05-17&rft.volume=16&rft.issue=5&rft.spage=e0251579&rft.epage=e0251579&rft.pages=e0251579-e0251579&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251579&rft_dat=%3Cgale_plos_%3EA662040667%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528424833&rft_id=info:pmid/33999969&rft_galeid=A662040667&rft_doaj_id=oai_doaj_org_article_e1430077fdeb4b6dbe8db8d48cdc7be2&rfr_iscdi=true