Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study
The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-05, Vol.16 (5), p.e0251579-e0251579 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0251579 |
---|---|
container_issue | 5 |
container_start_page | e0251579 |
container_title | PloS one |
container_volume | 16 |
creator | Kusner, Jonathan Luraghi, Giulia Khodaee, Farhan Rodriguez Matas, José Félix Migliavacca, Francesco Edelman, Elazer R Nezami, Farhad R |
description | The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV. |
doi_str_mv | 10.1371/journal.pone.0251579 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528424833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662040667</galeid><doaj_id>oai_doaj_org_article_e1430077fdeb4b6dbe8db8d48cdc7be2</doaj_id><sourcerecordid>A662040667</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpLpw5bkXQxC2UegUOja3gpZOk4UHMu15ND8-8lLWpLRi8kXEvLzvsfn-Jwse0vwlDBBvqz80Le6mXa-hSmmBSlE-Sw7JSWjE04xe35wPslehbDCuGCS85fZCWNlWrw8zbqb1kIfom6taxfoenZ7hSxsnAEE951ug_Mt0gG5iHpodISAokdr33dL3_jFFvkaxSWgypkhdM4i7fvoDNroZgNf0QwFtx6SbrQJcbDb19mLWjcB3uz3s-zmx_fr81-Ti8uf8_PZxcTwksZJRTDloiS2qEQlqSUy59wUnFpJKcMcABgQYWVpcCkEL-raCKx1KWxV1KZkZ9n7nW_X-KD2xQqKFlTmNJeMJWK-I6zXK9X1bq37rfLaqb8Xvl8oPebSgAKSM4yFqC1UecVtBdJW0ubSWCMqoMnr2z7aUK3BGmhjr5sj0-M3rVuqhd8oSaikeZ4MPu0Nen83QIhq7YKBptEt-GH33ZLkhOGEfvgHfTq7PbXQKQHX1j7FNaOpmvHUEznmXCRq-gSVHgtrZ1Jn1S7dHwk-HwkSE-E-LvQQgpr_vvp_9vL2mP14wC5BN3EZfDOMjROOwXwHmt6H0EP9WGSC1TgYD9VQ42Co_WAk2bvDH_QoepgE9gfMHQmY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528424833</pqid></control><display><type>article</type><title>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Kusner, Jonathan ; Luraghi, Giulia ; Khodaee, Farhan ; Rodriguez Matas, José Félix ; Migliavacca, Francesco ; Edelman, Elazer R ; Nezami, Farhad R</creator><contributor>Siontis, George C.M.</contributor><creatorcontrib>Kusner, Jonathan ; Luraghi, Giulia ; Khodaee, Farhan ; Rodriguez Matas, José Félix ; Migliavacca, Francesco ; Edelman, Elazer R ; Nezami, Farhad R ; Siontis, George C.M.</creatorcontrib><description>The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251579</identifier><identifier>PMID: 33999969</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aorta ; Aortic valve ; Biology and Life Sciences ; Care and treatment ; Catheters ; Chemical engineering ; Chemistry ; Computer simulation ; Coronary vessels ; Editing ; Engineering and Technology ; Finite element method ; Gas expanders ; Health risks ; Heart valve replacement ; Heart valves ; Laboratories ; Mathematical models ; Mechanics ; Mechanics (physics) ; Medicine and Health Sciences ; Methodology ; Mitral valve ; Morphology ; Orifices ; Patient outcomes ; Pericardium ; Phenotypes ; Phenotypic variations ; Physical Sciences ; Quadrilaterals ; Reviews ; Surgery ; Technology ; Thorax</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0251579-e0251579</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Kusner et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Kusner et al 2021 Kusner et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</citedby><cites>FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</cites><orcidid>0000-0001-5872-5037 ; 0000-0003-1466-4345 ; 0000-0002-4210-3177</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128244/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8128244/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33999969$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Siontis, George C.M.</contributor><creatorcontrib>Kusner, Jonathan</creatorcontrib><creatorcontrib>Luraghi, Giulia</creatorcontrib><creatorcontrib>Khodaee, Farhan</creatorcontrib><creatorcontrib>Rodriguez Matas, José Félix</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><creatorcontrib>Edelman, Elazer R</creatorcontrib><creatorcontrib>Nezami, Farhad R</creatorcontrib><title>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.</description><subject>Aorta</subject><subject>Aortic valve</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Catheters</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Computer simulation</subject><subject>Coronary vessels</subject><subject>Editing</subject><subject>Engineering and Technology</subject><subject>Finite element method</subject><subject>Gas expanders</subject><subject>Health risks</subject><subject>Heart valve replacement</subject><subject>Heart valves</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Mechanics (physics)</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Mitral valve</subject><subject>Morphology</subject><subject>Orifices</subject><subject>Patient outcomes</subject><subject>Pericardium</subject><subject>Phenotypes</subject><subject>Phenotypic variations</subject><subject>Physical Sciences</subject><subject>Quadrilaterals</subject><subject>Reviews</subject><subject>Surgery</subject><subject>Technology</subject><subject>Thorax</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BsgsHYLpLpw5bkXQxC2UegUOja3gpZOk4UHMu15ND8-8lLWpLRi8kXEvLzvsfn-Jwse0vwlDBBvqz80Le6mXa-hSmmBSlE-Sw7JSWjE04xe35wPslehbDCuGCS85fZCWNlWrw8zbqb1kIfom6taxfoenZ7hSxsnAEE951ug_Mt0gG5iHpodISAokdr33dL3_jFFvkaxSWgypkhdM4i7fvoDNroZgNf0QwFtx6SbrQJcbDb19mLWjcB3uz3s-zmx_fr81-Ti8uf8_PZxcTwksZJRTDloiS2qEQlqSUy59wUnFpJKcMcABgQYWVpcCkEL-raCKx1KWxV1KZkZ9n7nW_X-KD2xQqKFlTmNJeMJWK-I6zXK9X1bq37rfLaqb8Xvl8oPebSgAKSM4yFqC1UecVtBdJW0ubSWCMqoMnr2z7aUK3BGmhjr5sj0-M3rVuqhd8oSaikeZ4MPu0Nen83QIhq7YKBptEt-GH33ZLkhOGEfvgHfTq7PbXQKQHX1j7FNaOpmvHUEznmXCRq-gSVHgtrZ1Jn1S7dHwk-HwkSE-E-LvQQgpr_vvp_9vL2mP14wC5BN3EZfDOMjROOwXwHmt6H0EP9WGSC1TgYD9VQ42Co_WAk2bvDH_QoepgE9gfMHQmY</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>Kusner, Jonathan</creator><creator>Luraghi, Giulia</creator><creator>Khodaee, Farhan</creator><creator>Rodriguez Matas, José Félix</creator><creator>Migliavacca, Francesco</creator><creator>Edelman, Elazer R</creator><creator>Nezami, Farhad R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5872-5037</orcidid><orcidid>https://orcid.org/0000-0003-1466-4345</orcidid><orcidid>https://orcid.org/0000-0002-4210-3177</orcidid></search><sort><creationdate>20210517</creationdate><title>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</title><author>Kusner, Jonathan ; Luraghi, Giulia ; Khodaee, Farhan ; Rodriguez Matas, José Félix ; Migliavacca, Francesco ; Edelman, Elazer R ; Nezami, Farhad R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b1026791d5b7b82d18466c562d822306eee3e17d89c097765ffc70aa97db5fc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aorta</topic><topic>Aortic valve</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Catheters</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Computer simulation</topic><topic>Coronary vessels</topic><topic>Editing</topic><topic>Engineering and Technology</topic><topic>Finite element method</topic><topic>Gas expanders</topic><topic>Health risks</topic><topic>Heart valve replacement</topic><topic>Heart valves</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Mechanics (physics)</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Mitral valve</topic><topic>Morphology</topic><topic>Orifices</topic><topic>Patient outcomes</topic><topic>Pericardium</topic><topic>Phenotypes</topic><topic>Phenotypic variations</topic><topic>Physical Sciences</topic><topic>Quadrilaterals</topic><topic>Reviews</topic><topic>Surgery</topic><topic>Technology</topic><topic>Thorax</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kusner, Jonathan</creatorcontrib><creatorcontrib>Luraghi, Giulia</creatorcontrib><creatorcontrib>Khodaee, Farhan</creatorcontrib><creatorcontrib>Rodriguez Matas, José Félix</creatorcontrib><creatorcontrib>Migliavacca, Francesco</creatorcontrib><creatorcontrib>Edelman, Elazer R</creatorcontrib><creatorcontrib>Nezami, Farhad R</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science in Context</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kusner, Jonathan</au><au>Luraghi, Giulia</au><au>Khodaee, Farhan</au><au>Rodriguez Matas, José Félix</au><au>Migliavacca, Francesco</au><au>Edelman, Elazer R</au><au>Nezami, Farhad R</au><au>Siontis, George C.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-17</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0251579</spage><epage>e0251579</epage><pages>e0251579-e0251579</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The bicuspid aortic valve (BAV) is a common and heterogeneous congenital heart abnormality that is often complicated by aortic stenosis. Although initially developed for tricuspid aortic valves (TAV), transcatheter aortic valve replacement (TAVR) devices are increasingly applied to the treatment of BAV stenosis. It is known that patient-device relationship between TAVR and BAV are not equivalent to those observed in TAV but the nature of these differences are not well understood. We sought to better understand the patient-device relationships between TAVR devices and the two most common morphologies of BAV. We performed finite element simulation of TAVR deployment into three cases of idealized aortic anatomies (TAV, Sievers 0 BAV, Sievers 1 BAV), derived from patient-specific measurements. Valve leaflet von Mises stress at the aortic commissures differed by valve configuration over a ten-fold range (TAV: 0.55 MPa, Sievers 0: 6.64 MPa, and Sievers 1: 4.19 MPa). First principle stress on the aortic wall was greater in Sievers 1 (0.316 MPa) and Sievers 0 BAV (0.137 MPa) compared to TAV (0.056 MPa). TAVR placement in Sievers 1 BAV demonstrated significant device asymmetric alignment, with 1.09 mm of displacement between the center of the device measured at the annulus and at the leaflet free edge. This orifice displacement was marginal in TAV (0.33 mm) and even lower in Sievers 0 BAV (0.23 mm). BAV TAVR, depending on the subtype involved, may encounter disparate combinations of device under expansion and asymmetry compared to TAV deployment. Understanding the impacts of BAV morphology on patient-device relationships can help improve device selection, patient eligibility, and the overall safety of TAVR in BAV.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33999969</pmid><doi>10.1371/journal.pone.0251579</doi><tpages>e0251579</tpages><orcidid>https://orcid.org/0000-0001-5872-5037</orcidid><orcidid>https://orcid.org/0000-0003-1466-4345</orcidid><orcidid>https://orcid.org/0000-0002-4210-3177</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0251579-e0251579 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2528424833 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Aorta Aortic valve Biology and Life Sciences Care and treatment Catheters Chemical engineering Chemistry Computer simulation Coronary vessels Editing Engineering and Technology Finite element method Gas expanders Health risks Heart valve replacement Heart valves Laboratories Mathematical models Mechanics Mechanics (physics) Medicine and Health Sciences Methodology Mitral valve Morphology Orifices Patient outcomes Pericardium Phenotypes Phenotypic variations Physical Sciences Quadrilaterals Reviews Surgery Technology Thorax |
title | Understanding TAVR device expansion as it relates to morphology of the bicuspid aortic valve: A simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T16%3A30%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20TAVR%20device%20expansion%20as%20it%20relates%20to%20morphology%20of%20the%20bicuspid%20aortic%20valve:%20A%20simulation%20study&rft.jtitle=PloS%20one&rft.au=Kusner,%20Jonathan&rft.date=2021-05-17&rft.volume=16&rft.issue=5&rft.spage=e0251579&rft.epage=e0251579&rft.pages=e0251579-e0251579&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251579&rft_dat=%3Cgale_plos_%3EA662040667%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528424833&rft_id=info:pmid/33999969&rft_galeid=A662040667&rft_doaj_id=oai_doaj_org_article_e1430077fdeb4b6dbe8db8d48cdc7be2&rfr_iscdi=true |