MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity
Expression quantitative trait loci (eQTL) studies are used to understand the regulatory function of non-coding genome-wide association study (GWAS) risk loci, but colocalization alone does not demonstrate a causal relationship of gene expression affecting a trait. Evidence for mediation, that pertur...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2021-04, Vol.17 (4), p.e1009455-e1009455 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009455 |
---|---|
container_issue | 4 |
container_start_page | e1009455 |
container_title | PLoS genetics |
container_volume | 17 |
creator | Zhu, Anqi Matoba, Nana Wilson, Emma P Tapia, Amanda L Li, Yun Ibrahim, Joseph G Stein, Jason L Love, Michael I |
description | Expression quantitative trait loci (eQTL) studies are used to understand the regulatory function of non-coding genome-wide association study (GWAS) risk loci, but colocalization alone does not demonstrate a causal relationship of gene expression affecting a trait. Evidence for mediation, that perturbation of gene expression in a given tissue or developmental context will induce a change in the downstream GWAS trait, can be provided by two-sample Mendelian Randomization (MR). Here, we introduce a new statistical method, MRLocus, for Bayesian estimation of the gene-to-trait effect from eQTL and GWAS summary data for loci with evidence of allelic heterogeneity, that is, containing multiple causal variants. MRLocus makes use of a colocalization step applied to each nearly-LD-independent eQTL, followed by an MR analysis step across eQTLs. Additionally, our method involves estimation of the extent of allelic heterogeneity through a dispersion parameter, indicating variable mediation effects from each individual eQTL on the downstream trait. Our method is evaluated against other state-of-the-art methods for estimation of the gene-to-trait mediation effect, using an existing simulation framework. In simulation, MRLocus often has the highest accuracy among competing methods, and in each case provides more accurate estimation of uncertainty as assessed through interval coverage. MRLocus is then applied to five candidate causal genes for mediation of particular GWAS traits, where gene-to-trait effects are concordant with those previously reported. We find that MRLocus's estimation of the causal effect across eQTLs within a locus provides useful information for determining how perturbation of gene expression or individual regulatory elements will affect downstream traits. The MRLocus method is implemented as an R package available at https://mikelove.github.io/mrlocus. |
doi_str_mv | 10.1371/journal.pgen.1009455 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528225369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660614713</galeid><doaj_id>oai_doaj_org_article_80a5b34ef72a4f9885b9442237f0bd45</doaj_id><sourcerecordid>A660614713</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-f6d5d1ff6bd93837e0493ef9b50ecaf3554f9925a2845b0cb895f6d128147c753</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7rr6D0QLgujFjPlsUy-EdfFjYHRh_bgNaZq0GTLNmKTi_HtTp7tMZS-UXrScPud9kzc5WfYYgiXEJXy1cYPvhV3uWtUvIQAVofROdgopxYuSAHL36PskexDCBgBMWVXez04wZiXCgJ1m3aertZNDeJ2vGtVHo_emb3MphiBsnpRVyLeqMSKOZZFHL0zMY-fd0Hb5W7FXwYg-VyGabWJcnzudC2uVNTLvVFTejSIm7h9m97SwQT2a3mfZt_fvvl58XKwvP6wuztcLWaIiLnTR0AZqXdRNhRkuFSAVVrqqKVBSaEwp0VWFqECM0BrImlU09UDEICllSfFZ9vSgu7Mu8CmkwBFFDCGKiyoRqwPROLHhO59W7vfcCcP_FJxvufDRSKs4A4LWmChdIpF8GaN1RQhCuNSgbsjo9mZyG-qUk0wRemFnovM_vel4634mZUYwQUngxSTg3Y8h5ci3JkhlreiVG8Z1Q1qwCsPR69lf6O27m6hWpA2YXrvkK0dRfl4UoEgxQZyo5S1Uehq1NdL1SptUnzW8nDUkJqpfsU0XJfDVl6v_YD__O3v5fc4-P2I7JWzsgrPDeO_CHCQHUHoXglf65kAg4OPwXCfHx-Hh0_CktifHh3nTdD0t-DefbxNv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528225369</pqid></control><display><type>article</type><title>MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhu, Anqi ; Matoba, Nana ; Wilson, Emma P ; Tapia, Amanda L ; Li, Yun ; Ibrahim, Joseph G ; Stein, Jason L ; Love, Michael I</creator><contributor>Relton, Caroline</contributor><creatorcontrib>Zhu, Anqi ; Matoba, Nana ; Wilson, Emma P ; Tapia, Amanda L ; Li, Yun ; Ibrahim, Joseph G ; Stein, Jason L ; Love, Michael I ; Relton, Caroline</creatorcontrib><description>Expression quantitative trait loci (eQTL) studies are used to understand the regulatory function of non-coding genome-wide association study (GWAS) risk loci, but colocalization alone does not demonstrate a causal relationship of gene expression affecting a trait. Evidence for mediation, that perturbation of gene expression in a given tissue or developmental context will induce a change in the downstream GWAS trait, can be provided by two-sample Mendelian Randomization (MR). Here, we introduce a new statistical method, MRLocus, for Bayesian estimation of the gene-to-trait effect from eQTL and GWAS summary data for loci with evidence of allelic heterogeneity, that is, containing multiple causal variants. MRLocus makes use of a colocalization step applied to each nearly-LD-independent eQTL, followed by an MR analysis step across eQTLs. Additionally, our method involves estimation of the extent of allelic heterogeneity through a dispersion parameter, indicating variable mediation effects from each individual eQTL on the downstream trait. Our method is evaluated against other state-of-the-art methods for estimation of the gene-to-trait mediation effect, using an existing simulation framework. In simulation, MRLocus often has the highest accuracy among competing methods, and in each case provides more accurate estimation of uncertainty as assessed through interval coverage. MRLocus is then applied to five candidate causal genes for mediation of particular GWAS traits, where gene-to-trait effects are concordant with those previously reported. We find that MRLocus's estimation of the causal effect across eQTLs within a locus provides useful information for determining how perturbation of gene expression or individual regulatory elements will affect downstream traits. The MRLocus method is implemented as an R package available at https://mikelove.github.io/mrlocus.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009455</identifier><identifier>PMID: 33872308</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayesian analysis ; Bayesian statistical decision theory ; Biology and Life Sciences ; Computer Simulation ; Estimates ; Experiments ; Gene expression ; Gene Expression Profiling - statistics & numerical data ; Gene Expression Regulation - genetics ; Genetic Predisposition to Disease ; Genome-wide association studies ; Genome-Wide Association Study - statistics & numerical data ; Genomes ; Humans ; Hypotheses ; Linkage Disequilibrium ; Mathematical models ; Medicine and Health Sciences ; Mendelian Randomization Analysis ; Methods ; Models, Genetic ; Neonates ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Research and Analysis Methods ; Single-nucleotide polymorphism ; Software ; Statistical analysis ; Transcriptome - genetics</subject><ispartof>PLoS genetics, 2021-04, Vol.17 (4), p.e1009455-e1009455</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Zhu et al 2021 Zhu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-f6d5d1ff6bd93837e0493ef9b50ecaf3554f9925a2845b0cb895f6d128147c753</citedby><cites>FETCH-LOGICAL-c726t-f6d5d1ff6bd93837e0493ef9b50ecaf3554f9925a2845b0cb895f6d128147c753</cites><orcidid>0000-0002-9275-4189 ; 0000-0003-0543-2366 ; 0000-0002-3297-9642 ; 0000-0001-5329-0134 ; 0000-0003-4829-0513 ; 0000-0001-8401-0545 ; 0000-0001-7348-7372</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084342/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8084342/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33872308$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Relton, Caroline</contributor><creatorcontrib>Zhu, Anqi</creatorcontrib><creatorcontrib>Matoba, Nana</creatorcontrib><creatorcontrib>Wilson, Emma P</creatorcontrib><creatorcontrib>Tapia, Amanda L</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Ibrahim, Joseph G</creatorcontrib><creatorcontrib>Stein, Jason L</creatorcontrib><creatorcontrib>Love, Michael I</creatorcontrib><title>MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Expression quantitative trait loci (eQTL) studies are used to understand the regulatory function of non-coding genome-wide association study (GWAS) risk loci, but colocalization alone does not demonstrate a causal relationship of gene expression affecting a trait. Evidence for mediation, that perturbation of gene expression in a given tissue or developmental context will induce a change in the downstream GWAS trait, can be provided by two-sample Mendelian Randomization (MR). Here, we introduce a new statistical method, MRLocus, for Bayesian estimation of the gene-to-trait effect from eQTL and GWAS summary data for loci with evidence of allelic heterogeneity, that is, containing multiple causal variants. MRLocus makes use of a colocalization step applied to each nearly-LD-independent eQTL, followed by an MR analysis step across eQTLs. Additionally, our method involves estimation of the extent of allelic heterogeneity through a dispersion parameter, indicating variable mediation effects from each individual eQTL on the downstream trait. Our method is evaluated against other state-of-the-art methods for estimation of the gene-to-trait mediation effect, using an existing simulation framework. In simulation, MRLocus often has the highest accuracy among competing methods, and in each case provides more accurate estimation of uncertainty as assessed through interval coverage. MRLocus is then applied to five candidate causal genes for mediation of particular GWAS traits, where gene-to-trait effects are concordant with those previously reported. We find that MRLocus's estimation of the causal effect across eQTLs within a locus provides useful information for determining how perturbation of gene expression or individual regulatory elements will affect downstream traits. The MRLocus method is implemented as an R package available at https://mikelove.github.io/mrlocus.</description><subject>Bayesian analysis</subject><subject>Bayesian statistical decision theory</subject><subject>Biology and Life Sciences</subject><subject>Computer Simulation</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - statistics & numerical data</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study - statistics & numerical data</subject><subject>Genomes</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Linkage Disequilibrium</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Mendelian Randomization Analysis</subject><subject>Methods</subject><subject>Models, Genetic</subject><subject>Neonates</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Research and Analysis Methods</subject><subject>Single-nucleotide polymorphism</subject><subject>Software</subject><subject>Statistical analysis</subject><subject>Transcriptome - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7rr6D0QLgujFjPlsUy-EdfFjYHRh_bgNaZq0GTLNmKTi_HtTp7tMZS-UXrScPud9kzc5WfYYgiXEJXy1cYPvhV3uWtUvIQAVofROdgopxYuSAHL36PskexDCBgBMWVXez04wZiXCgJ1m3aertZNDeJ2vGtVHo_emb3MphiBsnpRVyLeqMSKOZZFHL0zMY-fd0Hb5W7FXwYg-VyGabWJcnzudC2uVNTLvVFTejSIm7h9m97SwQT2a3mfZt_fvvl58XKwvP6wuztcLWaIiLnTR0AZqXdRNhRkuFSAVVrqqKVBSaEwp0VWFqECM0BrImlU09UDEICllSfFZ9vSgu7Mu8CmkwBFFDCGKiyoRqwPROLHhO59W7vfcCcP_FJxvufDRSKs4A4LWmChdIpF8GaN1RQhCuNSgbsjo9mZyG-qUk0wRemFnovM_vel4634mZUYwQUngxSTg3Y8h5ci3JkhlreiVG8Z1Q1qwCsPR69lf6O27m6hWpA2YXrvkK0dRfl4UoEgxQZyo5S1Uehq1NdL1SptUnzW8nDUkJqpfsU0XJfDVl6v_YD__O3v5fc4-P2I7JWzsgrPDeO_CHCQHUHoXglf65kAg4OPwXCfHx-Hh0_CktifHh3nTdD0t-DefbxNv</recordid><startdate>20210419</startdate><enddate>20210419</enddate><creator>Zhu, Anqi</creator><creator>Matoba, Nana</creator><creator>Wilson, Emma P</creator><creator>Tapia, Amanda L</creator><creator>Li, Yun</creator><creator>Ibrahim, Joseph G</creator><creator>Stein, Jason L</creator><creator>Love, Michael I</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9275-4189</orcidid><orcidid>https://orcid.org/0000-0003-0543-2366</orcidid><orcidid>https://orcid.org/0000-0002-3297-9642</orcidid><orcidid>https://orcid.org/0000-0001-5329-0134</orcidid><orcidid>https://orcid.org/0000-0003-4829-0513</orcidid><orcidid>https://orcid.org/0000-0001-8401-0545</orcidid><orcidid>https://orcid.org/0000-0001-7348-7372</orcidid></search><sort><creationdate>20210419</creationdate><title>MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity</title><author>Zhu, Anqi ; Matoba, Nana ; Wilson, Emma P ; Tapia, Amanda L ; Li, Yun ; Ibrahim, Joseph G ; Stein, Jason L ; Love, Michael I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-f6d5d1ff6bd93837e0493ef9b50ecaf3554f9925a2845b0cb895f6d128147c753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Bayesian statistical decision theory</topic><topic>Biology and Life Sciences</topic><topic>Computer Simulation</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - statistics & numerical data</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study - statistics & numerical data</topic><topic>Genomes</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Linkage Disequilibrium</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Mendelian Randomization Analysis</topic><topic>Methods</topic><topic>Models, Genetic</topic><topic>Neonates</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Research and Analysis Methods</topic><topic>Single-nucleotide polymorphism</topic><topic>Software</topic><topic>Statistical analysis</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Anqi</creatorcontrib><creatorcontrib>Matoba, Nana</creatorcontrib><creatorcontrib>Wilson, Emma P</creatorcontrib><creatorcontrib>Tapia, Amanda L</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Ibrahim, Joseph G</creatorcontrib><creatorcontrib>Stein, Jason L</creatorcontrib><creatorcontrib>Love, Michael I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Anqi</au><au>Matoba, Nana</au><au>Wilson, Emma P</au><au>Tapia, Amanda L</au><au>Li, Yun</au><au>Ibrahim, Joseph G</au><au>Stein, Jason L</au><au>Love, Michael I</au><au>Relton, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-04-19</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>e1009455</spage><epage>e1009455</epage><pages>e1009455-e1009455</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Expression quantitative trait loci (eQTL) studies are used to understand the regulatory function of non-coding genome-wide association study (GWAS) risk loci, but colocalization alone does not demonstrate a causal relationship of gene expression affecting a trait. Evidence for mediation, that perturbation of gene expression in a given tissue or developmental context will induce a change in the downstream GWAS trait, can be provided by two-sample Mendelian Randomization (MR). Here, we introduce a new statistical method, MRLocus, for Bayesian estimation of the gene-to-trait effect from eQTL and GWAS summary data for loci with evidence of allelic heterogeneity, that is, containing multiple causal variants. MRLocus makes use of a colocalization step applied to each nearly-LD-independent eQTL, followed by an MR analysis step across eQTLs. Additionally, our method involves estimation of the extent of allelic heterogeneity through a dispersion parameter, indicating variable mediation effects from each individual eQTL on the downstream trait. Our method is evaluated against other state-of-the-art methods for estimation of the gene-to-trait mediation effect, using an existing simulation framework. In simulation, MRLocus often has the highest accuracy among competing methods, and in each case provides more accurate estimation of uncertainty as assessed through interval coverage. MRLocus is then applied to five candidate causal genes for mediation of particular GWAS traits, where gene-to-trait effects are concordant with those previously reported. We find that MRLocus's estimation of the causal effect across eQTLs within a locus provides useful information for determining how perturbation of gene expression or individual regulatory elements will affect downstream traits. The MRLocus method is implemented as an R package available at https://mikelove.github.io/mrlocus.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33872308</pmid><doi>10.1371/journal.pgen.1009455</doi><orcidid>https://orcid.org/0000-0002-9275-4189</orcidid><orcidid>https://orcid.org/0000-0003-0543-2366</orcidid><orcidid>https://orcid.org/0000-0002-3297-9642</orcidid><orcidid>https://orcid.org/0000-0001-5329-0134</orcidid><orcidid>https://orcid.org/0000-0003-4829-0513</orcidid><orcidid>https://orcid.org/0000-0001-8401-0545</orcidid><orcidid>https://orcid.org/0000-0001-7348-7372</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2021-04, Vol.17 (4), p.e1009455-e1009455 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2528225369 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Bayesian analysis Bayesian statistical decision theory Biology and Life Sciences Computer Simulation Estimates Experiments Gene expression Gene Expression Profiling - statistics & numerical data Gene Expression Regulation - genetics Genetic Predisposition to Disease Genome-wide association studies Genome-Wide Association Study - statistics & numerical data Genomes Humans Hypotheses Linkage Disequilibrium Mathematical models Medicine and Health Sciences Mendelian Randomization Analysis Methods Models, Genetic Neonates Quantitative trait loci Quantitative Trait Loci - genetics Research and Analysis Methods Single-nucleotide polymorphism Software Statistical analysis Transcriptome - genetics |
title | MRLocus: Identifying causal genes mediating a trait through Bayesian estimation of allelic heterogeneity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MRLocus:%20Identifying%20causal%20genes%20mediating%20a%20trait%20through%20Bayesian%20estimation%20of%20allelic%20heterogeneity&rft.jtitle=PLoS%20genetics&rft.au=Zhu,%20Anqi&rft.date=2021-04-19&rft.volume=17&rft.issue=4&rft.spage=e1009455&rft.epage=e1009455&rft.pages=e1009455-e1009455&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009455&rft_dat=%3Cgale_plos_%3EA660614713%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528225369&rft_id=info:pmid/33872308&rft_galeid=A660614713&rft_doaj_id=oai_doaj_org_article_80a5b34ef72a4f9885b9442237f0bd45&rfr_iscdi=true |