Nep1-like proteins as a target for plant pathogen control
The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylen...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-04, Vol.17 (4), p.e1009477-e1009477 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009477 |
---|---|
container_issue | 4 |
container_start_page | e1009477 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Pirc, Katja Hodnik, Vesna Snoj, Tina Lenarčič, Tea Caserman, Simon Podobnik, Marjetka Böhm, Hannah Albert, Isabell Kotar, Anita Plavec, Janez Borišek, Jure Damuzzo, Martina Magistrato, Alessandra Brus, Boris Sosič, Izidor Gobec, Stanislav Nürnberger, Thorsten Anderluh, Gregor |
description | The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development. |
doi_str_mv | 10.1371/journal.ppat.1009477 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528216587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660614863</galeid><doaj_id>oai_doaj_org_article_50b2e9458a9143078d5136235d749c19</doaj_id><sourcerecordid>A660614863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-5d4fce20f359cfac422d98e87b19f41e529bc70661d790e230b12698a82e5b073</originalsourceid><addsrcrecordid>eNqVkstu1TAQhiMEoqXwBggisYFFDr5fNkhVVeBIVZG4rC3HmaQ55MSpnSD69jictGpQN8iWbNnf_ON_PFn2EqMNphK_3_kp9LbbDIMdNxghzaR8lB1jzmkhqWSP7-2Psmcx7hBimGLxNDuiVHFJuDzO9CUMuOjan5APwY_Q9jG3aeajDQ2Mee1DPnS2H_OU5so30OfO92Pw3fPsSW27CC-W9ST78fH8-9nn4uLLp-3Z6UXhhMBjwStWOyCoply72jpGSKUVKFliXTMMnOjSSZTYSmoEhKISE6GVVQR4iSQ9yV4fdIfOR7O4joZwoggWXM3E9kBU3u7MENq9DTfG29b8PfChMTaMrevAcFQS0IwrqzGjSKqKYyoI5ZVk2mGdtD4s2aZyD5WD5NV2K9H1Td9emcb_MiqJSTk_5u0iEPz1BHE0-zY66FINwU_zuzHjGisx53rzD_qwu4VqbDLQ9rVPed0sak6FQAIzJWiiNg9QaVSwb9OPQd2m81XAu1XA_Kvwe2zsFKPZfvv6H-zlmmUH1gUfY4D6rnYYmblxb02auXHN0rgp7NX9ut8F3XYq_QPuXOXm</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528216587</pqid></control><display><type>article</type><title>Nep1-like proteins as a target for plant pathogen control</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Pirc, Katja ; Hodnik, Vesna ; Snoj, Tina ; Lenarčič, Tea ; Caserman, Simon ; Podobnik, Marjetka ; Böhm, Hannah ; Albert, Isabell ; Kotar, Anita ; Plavec, Janez ; Borišek, Jure ; Damuzzo, Martina ; Magistrato, Alessandra ; Brus, Boris ; Sosič, Izidor ; Gobec, Stanislav ; Nürnberger, Thorsten ; Anderluh, Gregor</creator><contributor>Wang, Yuanchao</contributor><creatorcontrib>Pirc, Katja ; Hodnik, Vesna ; Snoj, Tina ; Lenarčič, Tea ; Caserman, Simon ; Podobnik, Marjetka ; Böhm, Hannah ; Albert, Isabell ; Kotar, Anita ; Plavec, Janez ; Borišek, Jure ; Damuzzo, Martina ; Magistrato, Alessandra ; Brus, Boris ; Sosič, Izidor ; Gobec, Stanislav ; Nürnberger, Thorsten ; Anderluh, Gregor ; Wang, Yuanchao</creatorcontrib><description>The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009477</identifier><identifier>PMID: 33857257</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural chemicals ; Agricultural production ; Bacteria, Phytopathogenic ; Biology and Life Sciences ; Chemical properties ; Chlorosis ; Control ; Crop diseases ; Crop yield ; Cytotoxicity ; Experiments ; Food quality ; Fungi, Phytopathogenic ; Fungicides ; Identification and classification ; Infections ; Leaves ; Medicine and Health Sciences ; Mesophyll ; Microbiological research ; Microorganisms ; Molecular Dynamics Simulation ; Necrosis ; Nicotiana - genetics ; Nicotiana - parasitology ; NMR ; Nuclear magnetic resonance ; Pathogens ; Pest control ; Pesticides ; Physical Sciences ; Physiological aspects ; Phytophthora - genetics ; Phytophthora - pathogenicity ; Plant diseases ; Plant Diseases - parasitology ; Plant Diseases - prevention & control ; Plant Leaves - genetics ; Plant Leaves - parasitology ; Plant protection ; Plant tissues ; Proteins ; Pythium - genetics ; Pythium - pathogenicity ; Solanum tuberosum - genetics ; Solanum tuberosum - parasitology ; Steady state models ; Surface Plasmon Resonance ; Tobacco ; Toxicity</subject><ispartof>PLoS pathogens, 2021-04, Vol.17 (4), p.e1009477-e1009477</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Pirc et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Pirc et al 2021 Pirc et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-5d4fce20f359cfac422d98e87b19f41e529bc70661d790e230b12698a82e5b073</citedby><cites>FETCH-LOGICAL-c661t-5d4fce20f359cfac422d98e87b19f41e529bc70661d790e230b12698a82e5b073</cites><orcidid>0000-0001-7576-7490 ; 0000-0002-9678-3083 ; 0000-0002-1839-2044 ; 0000-0002-9916-8465 ; 0000-0001-6786-9737 ; 0000-0002-3370-4587 ; 0000-0003-2590-0323 ; 0000-0002-2430-3343 ; 0000-0002-2003-1985 ; 0000-0003-1570-8602 ; 0000-0002-1049-4222 ; 0000-0003-2223-496X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078777/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8078777/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33857257$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Wang, Yuanchao</contributor><creatorcontrib>Pirc, Katja</creatorcontrib><creatorcontrib>Hodnik, Vesna</creatorcontrib><creatorcontrib>Snoj, Tina</creatorcontrib><creatorcontrib>Lenarčič, Tea</creatorcontrib><creatorcontrib>Caserman, Simon</creatorcontrib><creatorcontrib>Podobnik, Marjetka</creatorcontrib><creatorcontrib>Böhm, Hannah</creatorcontrib><creatorcontrib>Albert, Isabell</creatorcontrib><creatorcontrib>Kotar, Anita</creatorcontrib><creatorcontrib>Plavec, Janez</creatorcontrib><creatorcontrib>Borišek, Jure</creatorcontrib><creatorcontrib>Damuzzo, Martina</creatorcontrib><creatorcontrib>Magistrato, Alessandra</creatorcontrib><creatorcontrib>Brus, Boris</creatorcontrib><creatorcontrib>Sosič, Izidor</creatorcontrib><creatorcontrib>Gobec, Stanislav</creatorcontrib><creatorcontrib>Nürnberger, Thorsten</creatorcontrib><creatorcontrib>Anderluh, Gregor</creatorcontrib><title>Nep1-like proteins as a target for plant pathogen control</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.</description><subject>Agricultural chemicals</subject><subject>Agricultural production</subject><subject>Bacteria, Phytopathogenic</subject><subject>Biology and Life Sciences</subject><subject>Chemical properties</subject><subject>Chlorosis</subject><subject>Control</subject><subject>Crop diseases</subject><subject>Crop yield</subject><subject>Cytotoxicity</subject><subject>Experiments</subject><subject>Food quality</subject><subject>Fungi, Phytopathogenic</subject><subject>Fungicides</subject><subject>Identification and classification</subject><subject>Infections</subject><subject>Leaves</subject><subject>Medicine and Health Sciences</subject><subject>Mesophyll</subject><subject>Microbiological research</subject><subject>Microorganisms</subject><subject>Molecular Dynamics Simulation</subject><subject>Necrosis</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - parasitology</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Pathogens</subject><subject>Pest control</subject><subject>Pesticides</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Phytophthora - genetics</subject><subject>Phytophthora - pathogenicity</subject><subject>Plant diseases</subject><subject>Plant Diseases - parasitology</subject><subject>Plant Diseases - prevention & control</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - parasitology</subject><subject>Plant protection</subject><subject>Plant tissues</subject><subject>Proteins</subject><subject>Pythium - genetics</subject><subject>Pythium - pathogenicity</subject><subject>Solanum tuberosum - genetics</subject><subject>Solanum tuberosum - parasitology</subject><subject>Steady state models</subject><subject>Surface Plasmon Resonance</subject><subject>Tobacco</subject><subject>Toxicity</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1TAQhiMEoqXwBggisYFFDr5fNkhVVeBIVZG4rC3HmaQ55MSpnSD69jictGpQN8iWbNnf_ON_PFn2EqMNphK_3_kp9LbbDIMdNxghzaR8lB1jzmkhqWSP7-2Psmcx7hBimGLxNDuiVHFJuDzO9CUMuOjan5APwY_Q9jG3aeajDQ2Mee1DPnS2H_OU5so30OfO92Pw3fPsSW27CC-W9ST78fH8-9nn4uLLp-3Z6UXhhMBjwStWOyCoply72jpGSKUVKFliXTMMnOjSSZTYSmoEhKISE6GVVQR4iSQ9yV4fdIfOR7O4joZwoggWXM3E9kBU3u7MENq9DTfG29b8PfChMTaMrevAcFQS0IwrqzGjSKqKYyoI5ZVk2mGdtD4s2aZyD5WD5NV2K9H1Td9emcb_MiqJSTk_5u0iEPz1BHE0-zY66FINwU_zuzHjGisx53rzD_qwu4VqbDLQ9rVPed0sak6FQAIzJWiiNg9QaVSwb9OPQd2m81XAu1XA_Kvwe2zsFKPZfvv6H-zlmmUH1gUfY4D6rnYYmblxb02auXHN0rgp7NX9ut8F3XYq_QPuXOXm</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Pirc, Katja</creator><creator>Hodnik, Vesna</creator><creator>Snoj, Tina</creator><creator>Lenarčič, Tea</creator><creator>Caserman, Simon</creator><creator>Podobnik, Marjetka</creator><creator>Böhm, Hannah</creator><creator>Albert, Isabell</creator><creator>Kotar, Anita</creator><creator>Plavec, Janez</creator><creator>Borišek, Jure</creator><creator>Damuzzo, Martina</creator><creator>Magistrato, Alessandra</creator><creator>Brus, Boris</creator><creator>Sosič, Izidor</creator><creator>Gobec, Stanislav</creator><creator>Nürnberger, Thorsten</creator><creator>Anderluh, Gregor</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7576-7490</orcidid><orcidid>https://orcid.org/0000-0002-9678-3083</orcidid><orcidid>https://orcid.org/0000-0002-1839-2044</orcidid><orcidid>https://orcid.org/0000-0002-9916-8465</orcidid><orcidid>https://orcid.org/0000-0001-6786-9737</orcidid><orcidid>https://orcid.org/0000-0002-3370-4587</orcidid><orcidid>https://orcid.org/0000-0003-2590-0323</orcidid><orcidid>https://orcid.org/0000-0002-2430-3343</orcidid><orcidid>https://orcid.org/0000-0002-2003-1985</orcidid><orcidid>https://orcid.org/0000-0003-1570-8602</orcidid><orcidid>https://orcid.org/0000-0002-1049-4222</orcidid><orcidid>https://orcid.org/0000-0003-2223-496X</orcidid></search><sort><creationdate>20210401</creationdate><title>Nep1-like proteins as a target for plant pathogen control</title><author>Pirc, Katja ; Hodnik, Vesna ; Snoj, Tina ; Lenarčič, Tea ; Caserman, Simon ; Podobnik, Marjetka ; Böhm, Hannah ; Albert, Isabell ; Kotar, Anita ; Plavec, Janez ; Borišek, Jure ; Damuzzo, Martina ; Magistrato, Alessandra ; Brus, Boris ; Sosič, Izidor ; Gobec, Stanislav ; Nürnberger, Thorsten ; Anderluh, Gregor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-5d4fce20f359cfac422d98e87b19f41e529bc70661d790e230b12698a82e5b073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural chemicals</topic><topic>Agricultural production</topic><topic>Bacteria, Phytopathogenic</topic><topic>Biology and Life Sciences</topic><topic>Chemical properties</topic><topic>Chlorosis</topic><topic>Control</topic><topic>Crop diseases</topic><topic>Crop yield</topic><topic>Cytotoxicity</topic><topic>Experiments</topic><topic>Food quality</topic><topic>Fungi, Phytopathogenic</topic><topic>Fungicides</topic><topic>Identification and classification</topic><topic>Infections</topic><topic>Leaves</topic><topic>Medicine and Health Sciences</topic><topic>Mesophyll</topic><topic>Microbiological research</topic><topic>Microorganisms</topic><topic>Molecular Dynamics Simulation</topic><topic>Necrosis</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - parasitology</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Pathogens</topic><topic>Pest control</topic><topic>Pesticides</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Phytophthora - genetics</topic><topic>Phytophthora - pathogenicity</topic><topic>Plant diseases</topic><topic>Plant Diseases - parasitology</topic><topic>Plant Diseases - prevention & control</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - parasitology</topic><topic>Plant protection</topic><topic>Plant tissues</topic><topic>Proteins</topic><topic>Pythium - genetics</topic><topic>Pythium - pathogenicity</topic><topic>Solanum tuberosum - genetics</topic><topic>Solanum tuberosum - parasitology</topic><topic>Steady state models</topic><topic>Surface Plasmon Resonance</topic><topic>Tobacco</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pirc, Katja</creatorcontrib><creatorcontrib>Hodnik, Vesna</creatorcontrib><creatorcontrib>Snoj, Tina</creatorcontrib><creatorcontrib>Lenarčič, Tea</creatorcontrib><creatorcontrib>Caserman, Simon</creatorcontrib><creatorcontrib>Podobnik, Marjetka</creatorcontrib><creatorcontrib>Böhm, Hannah</creatorcontrib><creatorcontrib>Albert, Isabell</creatorcontrib><creatorcontrib>Kotar, Anita</creatorcontrib><creatorcontrib>Plavec, Janez</creatorcontrib><creatorcontrib>Borišek, Jure</creatorcontrib><creatorcontrib>Damuzzo, Martina</creatorcontrib><creatorcontrib>Magistrato, Alessandra</creatorcontrib><creatorcontrib>Brus, Boris</creatorcontrib><creatorcontrib>Sosič, Izidor</creatorcontrib><creatorcontrib>Gobec, Stanislav</creatorcontrib><creatorcontrib>Nürnberger, Thorsten</creatorcontrib><creatorcontrib>Anderluh, Gregor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pirc, Katja</au><au>Hodnik, Vesna</au><au>Snoj, Tina</au><au>Lenarčič, Tea</au><au>Caserman, Simon</au><au>Podobnik, Marjetka</au><au>Böhm, Hannah</au><au>Albert, Isabell</au><au>Kotar, Anita</au><au>Plavec, Janez</au><au>Borišek, Jure</au><au>Damuzzo, Martina</au><au>Magistrato, Alessandra</au><au>Brus, Boris</au><au>Sosič, Izidor</au><au>Gobec, Stanislav</au><au>Nürnberger, Thorsten</au><au>Anderluh, Gregor</au><au>Wang, Yuanchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nep1-like proteins as a target for plant pathogen control</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>e1009477</spage><epage>e1009477</epage><pages>e1009477-e1009477</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>The lack of efficient methods to control the major diseases of crops most important to agriculture leads to huge economic losses and seriously threatens global food security. Many of the most important microbial plant pathogens, including bacteria, fungi, and oomycetes, secrete necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), which critically contribute to the virulence and spread of the disease. NLPs are cytotoxic to eudicot plants, as they disturb the plant plasma membrane by binding to specific plant membrane sphingolipid receptors. Their pivotal role in plant infection and broad taxonomic distribution makes NLPs a promising target for the development of novel phytopharmaceutical compounds. To identify compounds that bind to NLPs from the oomycetes Pythium aphanidermatum and Phytophthora parasitica, a library of 587 small molecules, most of which are commercially unavailable, was screened by surface plasmon resonance. Importantly, compounds that exhibited the highest affinity to NLPs were also found to inhibit NLP-mediated necrosis in tobacco leaves and Phytophthora infestans growth on potato leaves. Saturation transfer difference-nuclear magnetic resonance and molecular modelling of the most promising compound, anthranilic acid derivative, confirmed stable binding to the NLP protein, which resulted in decreased necrotic activity and reduced ion leakage from tobacco leaves. We, therefore, confirmed that NLPs are an appealing target for the development of novel phytopharmaceutical agents and strategies, which aim to directly interfere with the function of these major microbial virulence factors. The compounds identified in this study represent lead structures for further optimization and antimicrobial product development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33857257</pmid><doi>10.1371/journal.ppat.1009477</doi><orcidid>https://orcid.org/0000-0001-7576-7490</orcidid><orcidid>https://orcid.org/0000-0002-9678-3083</orcidid><orcidid>https://orcid.org/0000-0002-1839-2044</orcidid><orcidid>https://orcid.org/0000-0002-9916-8465</orcidid><orcidid>https://orcid.org/0000-0001-6786-9737</orcidid><orcidid>https://orcid.org/0000-0002-3370-4587</orcidid><orcidid>https://orcid.org/0000-0003-2590-0323</orcidid><orcidid>https://orcid.org/0000-0002-2430-3343</orcidid><orcidid>https://orcid.org/0000-0002-2003-1985</orcidid><orcidid>https://orcid.org/0000-0003-1570-8602</orcidid><orcidid>https://orcid.org/0000-0002-1049-4222</orcidid><orcidid>https://orcid.org/0000-0003-2223-496X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-04, Vol.17 (4), p.e1009477-e1009477 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2528216587 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Agricultural chemicals Agricultural production Bacteria, Phytopathogenic Biology and Life Sciences Chemical properties Chlorosis Control Crop diseases Crop yield Cytotoxicity Experiments Food quality Fungi, Phytopathogenic Fungicides Identification and classification Infections Leaves Medicine and Health Sciences Mesophyll Microbiological research Microorganisms Molecular Dynamics Simulation Necrosis Nicotiana - genetics Nicotiana - parasitology NMR Nuclear magnetic resonance Pathogens Pest control Pesticides Physical Sciences Physiological aspects Phytophthora - genetics Phytophthora - pathogenicity Plant diseases Plant Diseases - parasitology Plant Diseases - prevention & control Plant Leaves - genetics Plant Leaves - parasitology Plant protection Plant tissues Proteins Pythium - genetics Pythium - pathogenicity Solanum tuberosum - genetics Solanum tuberosum - parasitology Steady state models Surface Plasmon Resonance Tobacco Toxicity |
title | Nep1-like proteins as a target for plant pathogen control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A34%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nep1-like%20proteins%20as%20a%20target%20for%20plant%20pathogen%20control&rft.jtitle=PLoS%20pathogens&rft.au=Pirc,%20Katja&rft.date=2021-04-01&rft.volume=17&rft.issue=4&rft.spage=e1009477&rft.epage=e1009477&rft.pages=e1009477-e1009477&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009477&rft_dat=%3Cgale_plos_%3EA660614863%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528216587&rft_id=info:pmid/33857257&rft_galeid=A660614863&rft_doaj_id=oai_doaj_org_article_50b2e9458a9143078d5136235d749c19&rfr_iscdi=true |