Two-dimensional video-based analysis of human gait using pose estimation
Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-04, Vol.17 (4), p.e1008935-e1008935 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008935 |
---|---|
container_issue | 4 |
container_start_page | e1008935 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Stenum, Jan Rossi, Cristina Roemmich, Ryan T |
description | Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using two-dimensional video collected from readily accessible devices (e.g., smartphones). To date, several studies have extracted features of human gait using markerless pose estimation. However, we currently lack evaluation of video-based approaches using a dataset of human gait for a wide range of gait parameters on a stride-by-stride basis and a workflow for performing gait analysis from video. Here, we compared spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-source video-based human pose estimation) against simultaneously recorded three-dimensional motion capture from overground walking of healthy adults. When assessing all individual steps in the walking bouts, we observed mean absolute errors between motion capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time, swing time and double support time) and 0.049 m for step lengths. Accuracy improved when spatiotemporal gait parameters were calculated as individual participant mean values: mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths. The greatest difference in gait speed between motion capture and OpenPose was less than 0.10 m s-1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion capture and OpenPose were 4.0°, 5.6° and 7.4°. Our analysis workflow is freely available, involves minimal user input, and does not require prior gait analysis expertise. Finally, we offer suggestions and considerations for future applications of pose estimation for human gait analysis. |
doi_str_mv | 10.1371/journal.pcbi.1008935 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2528201520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A660614929</galeid><doaj_id>oai_doaj_org_article_9dedf2adcdc34bd1b410d95000e23c95</doaj_id><sourcerecordid>A660614929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c727t-c92f51e32a1d9d73da1e19caef1e48a46eb189676331f472aeec7a296d023c5c3</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLB47TuILUlUBXakCCcrZmtiT1KskXuKk0H-Pl02rLuoF-WBr_LzvfGiS5CWwFYgS3m_8PA7YrbamditgrFJCPkqOQUqRlUJWj--9j5JnIWwYi09VPE2OhKgUyEoeJ-eXv3xmXU9DcD7apdfOks9qDGRTjIGb4ELqm_Rq7nFIW3RTOgc3tOnWB0opTK7HKUqfJ08a7AK9WO6T5Menj5dn59nF18_rs9OLzJS8nDKjeCOBBEewypbCIhAog9QA5RXmBdUQaywLIaDJS45EpkSuCsu4MNKIk-T13nfb-aCXIQTNJa84A8lZJNZ7wnrc6O0YCxxvtEen_wb82GocJ2c60sqSbThaY43Iawt1DswqyRijmE3J6PVhyTbXPVlDwzRid2B6-DO4K936a10xpUBANHi7GIz-5xzHpXsXDHUdDuTnXd1QcSgE29X95h_04e4WqsXYgBsaH_Oanak-LQpWQK64itTqASoeS70zfqDGxfiB4N2BIDIT_Z5anEPQ6-_f_oP9csjme9aMPoSRmrvZAdO7Pb5tUu_2WC97HGWv7s_9TnS7uOIPg7buJA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528201520</pqid></control><display><type>article</type><title>Two-dimensional video-based analysis of human gait using pose estimation</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Stenum, Jan ; Rossi, Cristina ; Roemmich, Ryan T</creator><contributor>Schneidman-Duhovny, Dina</contributor><creatorcontrib>Stenum, Jan ; Rossi, Cristina ; Roemmich, Ryan T ; Schneidman-Duhovny, Dina</creatorcontrib><description>Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using two-dimensional video collected from readily accessible devices (e.g., smartphones). To date, several studies have extracted features of human gait using markerless pose estimation. However, we currently lack evaluation of video-based approaches using a dataset of human gait for a wide range of gait parameters on a stride-by-stride basis and a workflow for performing gait analysis from video. Here, we compared spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-source video-based human pose estimation) against simultaneously recorded three-dimensional motion capture from overground walking of healthy adults. When assessing all individual steps in the walking bouts, we observed mean absolute errors between motion capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time, swing time and double support time) and 0.049 m for step lengths. Accuracy improved when spatiotemporal gait parameters were calculated as individual participant mean values: mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths. The greatest difference in gait speed between motion capture and OpenPose was less than 0.10 m s-1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion capture and OpenPose were 4.0°, 5.6° and 7.4°. Our analysis workflow is freely available, involves minimal user input, and does not require prior gait analysis expertise. Finally, we offer suggestions and considerations for future applications of pose estimation for human gait analysis.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008935</identifier><identifier>PMID: 33891585</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Automation ; Biology and Life Sciences ; Computer graphics ; Datasets ; Digital video ; Engineering and Technology ; Error analysis ; Frames (data processing) ; Gait ; Gait recognition ; Heels ; Human locomotion ; Human motion ; Human performance ; Kinematics ; Laboratories ; Medicine and Health Sciences ; Methods ; Motion capture ; Parameters ; Pose estimation ; Research and Analysis Methods ; Software ; Three dimensional motion ; Two dimensional analysis ; Workflow</subject><ispartof>PLoS computational biology, 2021-04, Vol.17 (4), p.e1008935-e1008935</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Stenum et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Stenum et al 2021 Stenum et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c727t-c92f51e32a1d9d73da1e19caef1e48a46eb189676331f472aeec7a296d023c5c3</citedby><cites>FETCH-LOGICAL-c727t-c92f51e32a1d9d73da1e19caef1e48a46eb189676331f472aeec7a296d023c5c3</cites><orcidid>0000-0003-0797-6455 ; 0000-0001-7883-1945 ; 0000-0002-0088-8703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099131/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099131/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33891585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Schneidman-Duhovny, Dina</contributor><creatorcontrib>Stenum, Jan</creatorcontrib><creatorcontrib>Rossi, Cristina</creatorcontrib><creatorcontrib>Roemmich, Ryan T</creatorcontrib><title>Two-dimensional video-based analysis of human gait using pose estimation</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using two-dimensional video collected from readily accessible devices (e.g., smartphones). To date, several studies have extracted features of human gait using markerless pose estimation. However, we currently lack evaluation of video-based approaches using a dataset of human gait for a wide range of gait parameters on a stride-by-stride basis and a workflow for performing gait analysis from video. Here, we compared spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-source video-based human pose estimation) against simultaneously recorded three-dimensional motion capture from overground walking of healthy adults. When assessing all individual steps in the walking bouts, we observed mean absolute errors between motion capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time, swing time and double support time) and 0.049 m for step lengths. Accuracy improved when spatiotemporal gait parameters were calculated as individual participant mean values: mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths. The greatest difference in gait speed between motion capture and OpenPose was less than 0.10 m s-1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion capture and OpenPose were 4.0°, 5.6° and 7.4°. Our analysis workflow is freely available, involves minimal user input, and does not require prior gait analysis expertise. Finally, we offer suggestions and considerations for future applications of pose estimation for human gait analysis.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Computer graphics</subject><subject>Datasets</subject><subject>Digital video</subject><subject>Engineering and Technology</subject><subject>Error analysis</subject><subject>Frames (data processing)</subject><subject>Gait</subject><subject>Gait recognition</subject><subject>Heels</subject><subject>Human locomotion</subject><subject>Human motion</subject><subject>Human performance</subject><subject>Kinematics</subject><subject>Laboratories</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Motion capture</subject><subject>Parameters</subject><subject>Pose estimation</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Three dimensional motion</subject><subject>Two dimensional analysis</subject><subject>Workflow</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHLB47TuILUlUBXakCCcrZmtiT1KskXuKk0H-Pl02rLuoF-WBr_LzvfGiS5CWwFYgS3m_8PA7YrbamditgrFJCPkqOQUqRlUJWj--9j5JnIWwYi09VPE2OhKgUyEoeJ-eXv3xmXU9DcD7apdfOks9qDGRTjIGb4ELqm_Rq7nFIW3RTOgc3tOnWB0opTK7HKUqfJ08a7AK9WO6T5Menj5dn59nF18_rs9OLzJS8nDKjeCOBBEewypbCIhAog9QA5RXmBdUQaywLIaDJS45EpkSuCsu4MNKIk-T13nfb-aCXIQTNJa84A8lZJNZ7wnrc6O0YCxxvtEen_wb82GocJ2c60sqSbThaY43Iawt1DswqyRijmE3J6PVhyTbXPVlDwzRid2B6-DO4K936a10xpUBANHi7GIz-5xzHpXsXDHUdDuTnXd1QcSgE29X95h_04e4WqsXYgBsaH_Oanak-LQpWQK64itTqASoeS70zfqDGxfiB4N2BIDIT_Z5anEPQ6-_f_oP9csjme9aMPoSRmrvZAdO7Pb5tUu_2WC97HGWv7s_9TnS7uOIPg7buJA</recordid><startdate>20210423</startdate><enddate>20210423</enddate><creator>Stenum, Jan</creator><creator>Rossi, Cristina</creator><creator>Roemmich, Ryan T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0797-6455</orcidid><orcidid>https://orcid.org/0000-0001-7883-1945</orcidid><orcidid>https://orcid.org/0000-0002-0088-8703</orcidid></search><sort><creationdate>20210423</creationdate><title>Two-dimensional video-based analysis of human gait using pose estimation</title><author>Stenum, Jan ; Rossi, Cristina ; Roemmich, Ryan T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c727t-c92f51e32a1d9d73da1e19caef1e48a46eb189676331f472aeec7a296d023c5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Computer graphics</topic><topic>Datasets</topic><topic>Digital video</topic><topic>Engineering and Technology</topic><topic>Error analysis</topic><topic>Frames (data processing)</topic><topic>Gait</topic><topic>Gait recognition</topic><topic>Heels</topic><topic>Human locomotion</topic><topic>Human motion</topic><topic>Human performance</topic><topic>Kinematics</topic><topic>Laboratories</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Motion capture</topic><topic>Parameters</topic><topic>Pose estimation</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Three dimensional motion</topic><topic>Two dimensional analysis</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stenum, Jan</creatorcontrib><creatorcontrib>Rossi, Cristina</creatorcontrib><creatorcontrib>Roemmich, Ryan T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stenum, Jan</au><au>Rossi, Cristina</au><au>Roemmich, Ryan T</au><au>Schneidman-Duhovny, Dina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional video-based analysis of human gait using pose estimation</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-04-23</date><risdate>2021</risdate><volume>17</volume><issue>4</issue><spage>e1008935</spage><epage>e1008935</epage><pages>e1008935-e1008935</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Human gait analysis is often conducted in clinical and basic research, but many common approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile, data-limited, and require expertise. Recent advances in video-based pose estimation suggest potential for gait analysis using two-dimensional video collected from readily accessible devices (e.g., smartphones). To date, several studies have extracted features of human gait using markerless pose estimation. However, we currently lack evaluation of video-based approaches using a dataset of human gait for a wide range of gait parameters on a stride-by-stride basis and a workflow for performing gait analysis from video. Here, we compared spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-source video-based human pose estimation) against simultaneously recorded three-dimensional motion capture from overground walking of healthy adults. When assessing all individual steps in the walking bouts, we observed mean absolute errors between motion capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time, swing time and double support time) and 0.049 m for step lengths. Accuracy improved when spatiotemporal gait parameters were calculated as individual participant mean values: mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths. The greatest difference in gait speed between motion capture and OpenPose was less than 0.10 m s-1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion capture and OpenPose were 4.0°, 5.6° and 7.4°. Our analysis workflow is freely available, involves minimal user input, and does not require prior gait analysis expertise. Finally, we offer suggestions and considerations for future applications of pose estimation for human gait analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33891585</pmid><doi>10.1371/journal.pcbi.1008935</doi><orcidid>https://orcid.org/0000-0003-0797-6455</orcidid><orcidid>https://orcid.org/0000-0001-7883-1945</orcidid><orcidid>https://orcid.org/0000-0002-0088-8703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-04, Vol.17 (4), p.e1008935-e1008935 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2528201520 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Analysis Automation Biology and Life Sciences Computer graphics Datasets Digital video Engineering and Technology Error analysis Frames (data processing) Gait Gait recognition Heels Human locomotion Human motion Human performance Kinematics Laboratories Medicine and Health Sciences Methods Motion capture Parameters Pose estimation Research and Analysis Methods Software Three dimensional motion Two dimensional analysis Workflow |
title | Two-dimensional video-based analysis of human gait using pose estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20video-based%20analysis%20of%20human%20gait%20using%20pose%20estimation&rft.jtitle=PLoS%20computational%20biology&rft.au=Stenum,%20Jan&rft.date=2021-04-23&rft.volume=17&rft.issue=4&rft.spage=e1008935&rft.epage=e1008935&rft.pages=e1008935-e1008935&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008935&rft_dat=%3Cgale_plos_%3EA660614929%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528201520&rft_id=info:pmid/33891585&rft_galeid=A660614929&rft_doaj_id=oai_doaj_org_article_9dedf2adcdc34bd1b410d95000e23c95&rfr_iscdi=true |