A comprehensive swarming intelligent method for optimizing deep learning-based object detection by unmanned ground vehicles
Unmanned ground vehicles (UGVs) are an important research application of artificial intelligence. In particular, the deep learning-based object detection method is widely used in UGV-based environmental perception. Good experimental results are achieved by the deep learning-based object detection me...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-05, Vol.16 (5), p.e0251339-e0251339 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0251339 |
---|---|
container_issue | 5 |
container_start_page | e0251339 |
container_title | PloS one |
container_volume | 16 |
creator | Xu, Qian Wang, Gang Li, Ying Shi, Ling Li, Yaxin |
description | Unmanned ground vehicles (UGVs) are an important research application of artificial intelligence. In particular, the deep learning-based object detection method is widely used in UGV-based environmental perception. Good experimental results are achieved by the deep learning-based object detection method Faster region-based convolutional neural network (Faster R-CNN). However, the exploration space of the region proposal network (RPN) is restricted by its expression. In our paper, a boosted RPN (BRPN) with three improvements is developed to solve this problem. First, a novel enhanced pooling network is designed in this paper. Therefore, the BRPN can adapt to objects with different shapes. Second, the expression of BRPN loss function is improved to learn the negative samples. Furthermore, the grey wolf optimizer (GWO) is used to optimize the parameters of the improved BRPN loss function. Thereafter, the performance of the BRPN loss function is promoted. Third, a novel GA-SVM classifier is applied to strengthen the classification capacity. The PASCAL VOC 2007, VOC 2012 and KITTI datasets are used to test the BRPN. Consequently, excellent experimental results are obtained by our deep learning-based object detection method. |
doi_str_mv | 10.1371/journal.pone.0251339 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2526806368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661690386</galeid><doaj_id>oai_doaj_org_article_63cc1ad3edfd48cbb1e41de0be8b0dc8</doaj_id><sourcerecordid>A661690386</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-9fd3cd98d017585492551873b212f179891e6c5c080d56b65e675ae054aae2713</originalsourceid><addsrcrecordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOE8e5IK0qHitVqsTrajn2JPEqsVM7WSh8eZxuWm1QD8gHP-Y3f3vGM1H0HKM1Jjl-t7OjM6Jd99bAGiUZJqR4EJ3igiQrmiDy8Gh9Ej3xfodQRhilj6OTgLIUoeI0-rOJpe16Bw0Yr_cQ-5_CddrUsTYDtK2uwQxxB0NjVVxZF9t-0J3-PREKoI9bEM6E3aoUHlRsyx3IIZiGMGlr4vI6Hk0njAnG2tnRqHgPjZYt-KfRo0q0Hp7N81n0_eOHb-efVxeXn7bnm4uVpEUyrIpKEakKphDOM5alRZJlmOWkTHBS4bxgBQYqM4kYUhktaQY0zwSgLBUCkhyTs-jlQbdvredz3jxPsoQyRAllgdgeCGXFjvdOd8Jdcys0vzmwrubCDdOjOSVSYqEIqEqlTJYlhhQrQCWwEik5ab2fbxvLDpQM-XOiXYguLUY3vLZ7zjBmJE2CwJtZwNmrEfzAO-1l-AthwI437w4hU1KkAX31D3p_dDNVixCANpUN98pJlG8oxbRAoSwCtb6HCkNBp2UoskqH84XD24VDYAb4NdRi9J5vv375f_byx5J9fcQ2INqh8bYdp3LySzA9gNJZ7x1Ud0nGiE89cpsNPvUIn3skuL04_qA7p9umIH8BWT8OfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2526806368</pqid></control><display><type>article</type><title>A comprehensive swarming intelligent method for optimizing deep learning-based object detection by unmanned ground vehicles</title><source>Full-Text Journals in Chemistry (Open access)</source><source>Directory of Open Access Journals - May need to register for free articles</source><source>Public Library of Science (PLoS)(OpenAccess)</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Xu, Qian ; Wang, Gang ; Li, Ying ; Shi, Ling ; Li, Yaxin</creator><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Xu, Qian ; Wang, Gang ; Li, Ying ; Shi, Ling ; Li, Yaxin ; Chen, Chi-Hua</creatorcontrib><description>Unmanned ground vehicles (UGVs) are an important research application of artificial intelligence. In particular, the deep learning-based object detection method is widely used in UGV-based environmental perception. Good experimental results are achieved by the deep learning-based object detection method Faster region-based convolutional neural network (Faster R-CNN). However, the exploration space of the region proposal network (RPN) is restricted by its expression. In our paper, a boosted RPN (BRPN) with three improvements is developed to solve this problem. First, a novel enhanced pooling network is designed in this paper. Therefore, the BRPN can adapt to objects with different shapes. Second, the expression of BRPN loss function is improved to learn the negative samples. Furthermore, the grey wolf optimizer (GWO) is used to optimize the parameters of the improved BRPN loss function. Thereafter, the performance of the BRPN loss function is promoted. Third, a novel GA-SVM classifier is applied to strengthen the classification capacity. The PASCAL VOC 2007, VOC 2012 and KITTI datasets are used to test the BRPN. Consequently, excellent experimental results are obtained by our deep learning-based object detection method.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0251339</identifier><identifier>PMID: 33984009</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Classification ; Computer and Information Sciences ; Computer engineering ; Computer science ; Deep learning ; Ecology and Environmental Sciences ; Education ; Engineering and Technology ; Feature extraction ; Image processing ; Laboratories ; Localization ; Methods ; Neural networks ; Object recognition ; Physical Sciences ; Proposals ; Sampling ; Semantics ; Software engineering ; Support vector machines ; Swarm intelligence ; Swarming ; Unmanned ground vehicles</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0251339-e0251339</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Xu et al 2021 Xu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-9fd3cd98d017585492551873b212f179891e6c5c080d56b65e675ae054aae2713</citedby><cites>FETCH-LOGICAL-c692t-9fd3cd98d017585492551873b212f179891e6c5c080d56b65e675ae054aae2713</cites><orcidid>0000-0002-5344-4831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118342/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118342/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33984009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Chi-Hua</contributor><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Shi, Ling</creatorcontrib><creatorcontrib>Li, Yaxin</creatorcontrib><title>A comprehensive swarming intelligent method for optimizing deep learning-based object detection by unmanned ground vehicles</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Unmanned ground vehicles (UGVs) are an important research application of artificial intelligence. In particular, the deep learning-based object detection method is widely used in UGV-based environmental perception. Good experimental results are achieved by the deep learning-based object detection method Faster region-based convolutional neural network (Faster R-CNN). However, the exploration space of the region proposal network (RPN) is restricted by its expression. In our paper, a boosted RPN (BRPN) with three improvements is developed to solve this problem. First, a novel enhanced pooling network is designed in this paper. Therefore, the BRPN can adapt to objects with different shapes. Second, the expression of BRPN loss function is improved to learn the negative samples. Furthermore, the grey wolf optimizer (GWO) is used to optimize the parameters of the improved BRPN loss function. Thereafter, the performance of the BRPN loss function is promoted. Third, a novel GA-SVM classifier is applied to strengthen the classification capacity. The PASCAL VOC 2007, VOC 2012 and KITTI datasets are used to test the BRPN. Consequently, excellent experimental results are obtained by our deep learning-based object detection method.</description><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Computer science</subject><subject>Deep learning</subject><subject>Ecology and Environmental Sciences</subject><subject>Education</subject><subject>Engineering and Technology</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Laboratories</subject><subject>Localization</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>Physical Sciences</subject><subject>Proposals</subject><subject>Sampling</subject><subject>Semantics</subject><subject>Software engineering</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>Swarming</subject><subject>Unmanned ground vehicles</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAQxyMEoqXwDRBEQkJw2MWOE8e5IK0qHitVqsTrajn2JPEqsVM7WSh8eZxuWm1QD8gHP-Y3f3vGM1H0HKM1Jjl-t7OjM6Jd99bAGiUZJqR4EJ3igiQrmiDy8Gh9Ej3xfodQRhilj6OTgLIUoeI0-rOJpe16Bw0Yr_cQ-5_CddrUsTYDtK2uwQxxB0NjVVxZF9t-0J3-PREKoI9bEM6E3aoUHlRsyx3IIZiGMGlr4vI6Hk0njAnG2tnRqHgPjZYt-KfRo0q0Hp7N81n0_eOHb-efVxeXn7bnm4uVpEUyrIpKEakKphDOM5alRZJlmOWkTHBS4bxgBQYqM4kYUhktaQY0zwSgLBUCkhyTs-jlQbdvredz3jxPsoQyRAllgdgeCGXFjvdOd8Jdcys0vzmwrubCDdOjOSVSYqEIqEqlTJYlhhQrQCWwEik5ab2fbxvLDpQM-XOiXYguLUY3vLZ7zjBmJE2CwJtZwNmrEfzAO-1l-AthwI437w4hU1KkAX31D3p_dDNVixCANpUN98pJlG8oxbRAoSwCtb6HCkNBp2UoskqH84XD24VDYAb4NdRi9J5vv375f_byx5J9fcQ2INqh8bYdp3LySzA9gNJZ7x1Ud0nGiE89cpsNPvUIn3skuL04_qA7p9umIH8BWT8OfQ</recordid><startdate>20210513</startdate><enddate>20210513</enddate><creator>Xu, Qian</creator><creator>Wang, Gang</creator><creator>Li, Ying</creator><creator>Shi, Ling</creator><creator>Li, Yaxin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5344-4831</orcidid></search><sort><creationdate>20210513</creationdate><title>A comprehensive swarming intelligent method for optimizing deep learning-based object detection by unmanned ground vehicles</title><author>Xu, Qian ; Wang, Gang ; Li, Ying ; Shi, Ling ; Li, Yaxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-9fd3cd98d017585492551873b212f179891e6c5c080d56b65e675ae054aae2713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Computer science</topic><topic>Deep learning</topic><topic>Ecology and Environmental Sciences</topic><topic>Education</topic><topic>Engineering and Technology</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Laboratories</topic><topic>Localization</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>Physical Sciences</topic><topic>Proposals</topic><topic>Sampling</topic><topic>Semantics</topic><topic>Software engineering</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>Swarming</topic><topic>Unmanned ground vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Qian</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Li, Ying</creatorcontrib><creatorcontrib>Shi, Ling</creatorcontrib><creatorcontrib>Li, Yaxin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale_Opposing Viewpoints In Context</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals - May need to register for free articles</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Qian</au><au>Wang, Gang</au><au>Li, Ying</au><au>Shi, Ling</au><au>Li, Yaxin</au><au>Chen, Chi-Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comprehensive swarming intelligent method for optimizing deep learning-based object detection by unmanned ground vehicles</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-13</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0251339</spage><epage>e0251339</epage><pages>e0251339-e0251339</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Unmanned ground vehicles (UGVs) are an important research application of artificial intelligence. In particular, the deep learning-based object detection method is widely used in UGV-based environmental perception. Good experimental results are achieved by the deep learning-based object detection method Faster region-based convolutional neural network (Faster R-CNN). However, the exploration space of the region proposal network (RPN) is restricted by its expression. In our paper, a boosted RPN (BRPN) with three improvements is developed to solve this problem. First, a novel enhanced pooling network is designed in this paper. Therefore, the BRPN can adapt to objects with different shapes. Second, the expression of BRPN loss function is improved to learn the negative samples. Furthermore, the grey wolf optimizer (GWO) is used to optimize the parameters of the improved BRPN loss function. Thereafter, the performance of the BRPN loss function is promoted. Third, a novel GA-SVM classifier is applied to strengthen the classification capacity. The PASCAL VOC 2007, VOC 2012 and KITTI datasets are used to test the BRPN. Consequently, excellent experimental results are obtained by our deep learning-based object detection method.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33984009</pmid><doi>10.1371/journal.pone.0251339</doi><tpages>e0251339</tpages><orcidid>https://orcid.org/0000-0002-5344-4831</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0251339-e0251339 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2526806368 |
source | Full-Text Journals in Chemistry (Open access); Directory of Open Access Journals - May need to register for free articles; Public Library of Science (PLoS)(OpenAccess); PubMed Central; EZB Electronic Journals Library |
subjects | Biology and Life Sciences Classification Computer and Information Sciences Computer engineering Computer science Deep learning Ecology and Environmental Sciences Education Engineering and Technology Feature extraction Image processing Laboratories Localization Methods Neural networks Object recognition Physical Sciences Proposals Sampling Semantics Software engineering Support vector machines Swarm intelligence Swarming Unmanned ground vehicles |
title | A comprehensive swarming intelligent method for optimizing deep learning-based object detection by unmanned ground vehicles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A47%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comprehensive%20swarming%20intelligent%20method%20for%20optimizing%20deep%20learning-based%20object%20detection%20by%20unmanned%20ground%20vehicles&rft.jtitle=PloS%20one&rft.au=Xu,%20Qian&rft.date=2021-05-13&rft.volume=16&rft.issue=5&rft.spage=e0251339&rft.epage=e0251339&rft.pages=e0251339-e0251339&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0251339&rft_dat=%3Cgale_plos_%3EA661690386%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2526806368&rft_id=info:pmid/33984009&rft_galeid=A661690386&rft_doaj_id=oai_doaj_org_article_63cc1ad3edfd48cbb1e41de0be8b0dc8&rfr_iscdi=true |