Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings
It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-05, Vol.16 (5), p.e0250210 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e0250210 |
container_title | PloS one |
container_volume | 16 |
creator | Yousef, Ahmed F Ali, Muhammad M Rizwan, Hafiz M Ahmed, Mohamed A A Ali, Waleed M Kalaji, Hazem M Elsheery, Nabil Wróbel, Jacek Xu, Yong Chen, Faxing |
description | It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings grew for 30 days under 100 μmol m-2 s-1 of mixed LEDs (red 70%+ blue 30%). During the post-grafting period, seedlings grew for 20 days under the same light intensity but the lightening source was either red LED, mixed LEDs (red 70% + blue 30%), blue LED or white fluorescent lamps. This was done to determine which light source(s) could better improve seedling quality and increase grafting success. Our results showed that application of red and blue light mixture (R7:B3) caused significant increase in total leaf area, dry weight (total, shoot and root), total chlorophyll/carotenoid ratio, soluble protein and sugar content. Moreover, this light treatment maintained better photosynthetic performance i.e. more effective quantum yield of PSII photochemistry Y(II), better photochemical quenching (qP), and higher electron transport rate (ETR). This can be partially explained by the observed upregulation of gene expression levels of PsaA and PsbA and the parallel protein expression levels. This in turn could lead to better functioning of the photosynthetic apparatus of tomato seedlings and then to faster production of photoassimilate ready to be translocated to various tissues and organs, including those most in need, i.e., involved in the formation of the graft union. |
doi_str_mv | 10.1371/journal.pone.0250210 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2523090987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A661069332</galeid><doaj_id>oai_doaj_org_article_fa45282c1b8b40c8aac7d08f1bb4baca</doaj_id><sourcerecordid>A661069332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-fcf6ff5e56f9ba1814e2c0ddf782b6b009f845d7026c88c377514537b67d56b33</originalsourceid><addsrcrecordid>eNqNkl1r1TAcxoso7kW_gWhBGHpxjnlp0_RGGGPqgcFAp7chSZM2h7TpklTctzdnpxunsguTi7z09zxJ_n2y7A0Ea4gr-GnrJj9wux7doNYAlQBB8Cw7hjVGK4IAfn4wP8pOQtgCUGJKyMvsCOOaQFLQ4-zmUmslY8idzq1pu5iHMa391OduyHvnx86txu4uGGddayS3efTc7AWt5zqqJo-u59HlQanGmqENr7IXmtugXs_jafbzy-XNxbfV1fXXzcX51UoShOJKS020LlVJdC04pLBQSIKm0RVFgggAak2LsqkAIpJSiauqhEWJK0GqpiQC49Ps3d53tC6wuSCBoRJhUIOaVonY7InG8S0bvem5v2OOG3a_4XzLuI9GWsU0L0pEkYSCigJIyrmsGkA1FKIQXPLk9Xk-bRK9aqQaUiXswnT5ZTAda91vRiEoUksGH2YD724nFSLrTZDKWj4oN93fu8AEFRQl9P0_6NOvm6mWpweYQbt0rtyZsnNCICA1xjuv9RNU6o3qjUzp0SbtLwQfF4LERPUntnwKgW1-fP9_9vrXkj07YDvFbeyCs1M0bghLsNiD0rsQvNKPRYaA7cL_UA22Cz-bw59kbw9_0KPoIe34L84S_5s</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2523090987</pqid></control><display><type>article</type><title>Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yousef, Ahmed F ; Ali, Muhammad M ; Rizwan, Hafiz M ; Ahmed, Mohamed A A ; Ali, Waleed M ; Kalaji, Hazem M ; Elsheery, Nabil ; Wróbel, Jacek ; Xu, Yong ; Chen, Faxing</creator><contributor>Gururani, Mayank</contributor><creatorcontrib>Yousef, Ahmed F ; Ali, Muhammad M ; Rizwan, Hafiz M ; Ahmed, Mohamed A A ; Ali, Waleed M ; Kalaji, Hazem M ; Elsheery, Nabil ; Wróbel, Jacek ; Xu, Yong ; Chen, Faxing ; Gururani, Mayank</creatorcontrib><description>It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings grew for 30 days under 100 μmol m-2 s-1 of mixed LEDs (red 70%+ blue 30%). During the post-grafting period, seedlings grew for 20 days under the same light intensity but the lightening source was either red LED, mixed LEDs (red 70% + blue 30%), blue LED or white fluorescent lamps. This was done to determine which light source(s) could better improve seedling quality and increase grafting success. Our results showed that application of red and blue light mixture (R7:B3) caused significant increase in total leaf area, dry weight (total, shoot and root), total chlorophyll/carotenoid ratio, soluble protein and sugar content. Moreover, this light treatment maintained better photosynthetic performance i.e. more effective quantum yield of PSII photochemistry Y(II), better photochemical quenching (qP), and higher electron transport rate (ETR). This can be partially explained by the observed upregulation of gene expression levels of PsaA and PsbA and the parallel protein expression levels. This in turn could lead to better functioning of the photosynthetic apparatus of tomato seedlings and then to faster production of photoassimilate ready to be translocated to various tissues and organs, including those most in need, i.e., involved in the formation of the graft union.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0250210</identifier><identifier>PMID: 33961648</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural engineering ; Agricultural production ; Agriculture ; Analysis ; Bioengineering ; Biology and Life Sciences ; Botany ; Carotenoids ; Carotenoids - metabolism ; Chlorophyll - metabolism ; Chloroplasts ; Computer programs ; Drafting software ; Durability ; Editing ; Electron transport ; Electronic engineering ; Electronic mail ; Engineering and Technology ; Environmental conditions ; Forestry ; Funding ; Gene expression ; Gene Expression Regulation, Plant ; Growth ; Horticulture ; Learning algorithms ; Light ; Light emitting diodes ; Light intensity ; Light sources ; Luminous intensity ; Machine learning ; Medicinal plants ; Methodology ; Methods ; Photochemicals ; Photochemistry ; Photosynthesis ; Photosystem II ; Physical Sciences ; Physiological effects ; Physiology ; Plant growth ; Plant Leaves - radiation effects ; Plant physiology ; Plant production ; Plant resistance ; Proteins ; RNA polymerase ; Seedlings ; Seedlings - growth & development ; Seedlings - radiation effects ; Software ; Solanum lycopersicum - growth & development ; Solanum lycopersicum - physiology ; Solanum lycopersicum - radiation effects ; Technology ; Tomatoes ; Transport rate</subject><ispartof>PloS one, 2021-05, Vol.16 (5), p.e0250210</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Yousef et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Yousef et al 2021 Yousef et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-fcf6ff5e56f9ba1814e2c0ddf782b6b009f845d7026c88c377514537b67d56b33</citedby><cites>FETCH-LOGICAL-c622t-fcf6ff5e56f9ba1814e2c0ddf782b6b009f845d7026c88c377514537b67d56b33</cites><orcidid>0000-0002-6614-5566 ; 0000-0002-3833-4917 ; 0000-0002-3092-6328</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104444/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8104444/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33961648$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gururani, Mayank</contributor><creatorcontrib>Yousef, Ahmed F</creatorcontrib><creatorcontrib>Ali, Muhammad M</creatorcontrib><creatorcontrib>Rizwan, Hafiz M</creatorcontrib><creatorcontrib>Ahmed, Mohamed A A</creatorcontrib><creatorcontrib>Ali, Waleed M</creatorcontrib><creatorcontrib>Kalaji, Hazem M</creatorcontrib><creatorcontrib>Elsheery, Nabil</creatorcontrib><creatorcontrib>Wróbel, Jacek</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Chen, Faxing</creatorcontrib><title>Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings grew for 30 days under 100 μmol m-2 s-1 of mixed LEDs (red 70%+ blue 30%). During the post-grafting period, seedlings grew for 20 days under the same light intensity but the lightening source was either red LED, mixed LEDs (red 70% + blue 30%), blue LED or white fluorescent lamps. This was done to determine which light source(s) could better improve seedling quality and increase grafting success. Our results showed that application of red and blue light mixture (R7:B3) caused significant increase in total leaf area, dry weight (total, shoot and root), total chlorophyll/carotenoid ratio, soluble protein and sugar content. Moreover, this light treatment maintained better photosynthetic performance i.e. more effective quantum yield of PSII photochemistry Y(II), better photochemical quenching (qP), and higher electron transport rate (ETR). This can be partially explained by the observed upregulation of gene expression levels of PsaA and PsbA and the parallel protein expression levels. This in turn could lead to better functioning of the photosynthetic apparatus of tomato seedlings and then to faster production of photoassimilate ready to be translocated to various tissues and organs, including those most in need, i.e., involved in the formation of the graft union.</description><subject>Agricultural engineering</subject><subject>Agricultural production</subject><subject>Agriculture</subject><subject>Analysis</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Botany</subject><subject>Carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Chlorophyll - metabolism</subject><subject>Chloroplasts</subject><subject>Computer programs</subject><subject>Drafting software</subject><subject>Durability</subject><subject>Editing</subject><subject>Electron transport</subject><subject>Electronic engineering</subject><subject>Electronic mail</subject><subject>Engineering and Technology</subject><subject>Environmental conditions</subject><subject>Forestry</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Growth</subject><subject>Horticulture</subject><subject>Learning algorithms</subject><subject>Light</subject><subject>Light emitting diodes</subject><subject>Light intensity</subject><subject>Light sources</subject><subject>Luminous intensity</subject><subject>Machine learning</subject><subject>Medicinal plants</subject><subject>Methodology</subject><subject>Methods</subject><subject>Photochemicals</subject><subject>Photochemistry</subject><subject>Photosynthesis</subject><subject>Photosystem II</subject><subject>Physical Sciences</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Plant Leaves - radiation effects</subject><subject>Plant physiology</subject><subject>Plant production</subject><subject>Plant resistance</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>Seedlings</subject><subject>Seedlings - growth & development</subject><subject>Seedlings - radiation effects</subject><subject>Software</subject><subject>Solanum lycopersicum - growth & development</subject><subject>Solanum lycopersicum - physiology</subject><subject>Solanum lycopersicum - radiation effects</subject><subject>Technology</subject><subject>Tomatoes</subject><subject>Transport rate</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r1TAcxoso7kW_gWhBGHpxjnlp0_RGGGPqgcFAp7chSZM2h7TpklTctzdnpxunsguTi7z09zxJ_n2y7A0Ea4gr-GnrJj9wux7doNYAlQBB8Cw7hjVGK4IAfn4wP8pOQtgCUGJKyMvsCOOaQFLQ4-zmUmslY8idzq1pu5iHMa391OduyHvnx86txu4uGGddayS3efTc7AWt5zqqJo-u59HlQanGmqENr7IXmtugXs_jafbzy-XNxbfV1fXXzcX51UoShOJKS020LlVJdC04pLBQSIKm0RVFgggAak2LsqkAIpJSiauqhEWJK0GqpiQC49Ps3d53tC6wuSCBoRJhUIOaVonY7InG8S0bvem5v2OOG3a_4XzLuI9GWsU0L0pEkYSCigJIyrmsGkA1FKIQXPLk9Xk-bRK9aqQaUiXswnT5ZTAda91vRiEoUksGH2YD724nFSLrTZDKWj4oN93fu8AEFRQl9P0_6NOvm6mWpweYQbt0rtyZsnNCICA1xjuv9RNU6o3qjUzp0SbtLwQfF4LERPUntnwKgW1-fP9_9vrXkj07YDvFbeyCs1M0bghLsNiD0rsQvNKPRYaA7cL_UA22Cz-bw59kbw9_0KPoIe34L84S_5s</recordid><startdate>20210507</startdate><enddate>20210507</enddate><creator>Yousef, Ahmed F</creator><creator>Ali, Muhammad M</creator><creator>Rizwan, Hafiz M</creator><creator>Ahmed, Mohamed A A</creator><creator>Ali, Waleed M</creator><creator>Kalaji, Hazem M</creator><creator>Elsheery, Nabil</creator><creator>Wróbel, Jacek</creator><creator>Xu, Yong</creator><creator>Chen, Faxing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6614-5566</orcidid><orcidid>https://orcid.org/0000-0002-3833-4917</orcidid><orcidid>https://orcid.org/0000-0002-3092-6328</orcidid></search><sort><creationdate>20210507</creationdate><title>Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings</title><author>Yousef, Ahmed F ; Ali, Muhammad M ; Rizwan, Hafiz M ; Ahmed, Mohamed A A ; Ali, Waleed M ; Kalaji, Hazem M ; Elsheery, Nabil ; Wróbel, Jacek ; Xu, Yong ; Chen, Faxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-fcf6ff5e56f9ba1814e2c0ddf782b6b009f845d7026c88c377514537b67d56b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural engineering</topic><topic>Agricultural production</topic><topic>Agriculture</topic><topic>Analysis</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Botany</topic><topic>Carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Chlorophyll - metabolism</topic><topic>Chloroplasts</topic><topic>Computer programs</topic><topic>Drafting software</topic><topic>Durability</topic><topic>Editing</topic><topic>Electron transport</topic><topic>Electronic engineering</topic><topic>Electronic mail</topic><topic>Engineering and Technology</topic><topic>Environmental conditions</topic><topic>Forestry</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Growth</topic><topic>Horticulture</topic><topic>Learning algorithms</topic><topic>Light</topic><topic>Light emitting diodes</topic><topic>Light intensity</topic><topic>Light sources</topic><topic>Luminous intensity</topic><topic>Machine learning</topic><topic>Medicinal plants</topic><topic>Methodology</topic><topic>Methods</topic><topic>Photochemicals</topic><topic>Photochemistry</topic><topic>Photosynthesis</topic><topic>Photosystem II</topic><topic>Physical Sciences</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Plant Leaves - radiation effects</topic><topic>Plant physiology</topic><topic>Plant production</topic><topic>Plant resistance</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>Seedlings</topic><topic>Seedlings - growth & development</topic><topic>Seedlings - radiation effects</topic><topic>Software</topic><topic>Solanum lycopersicum - growth & development</topic><topic>Solanum lycopersicum - physiology</topic><topic>Solanum lycopersicum - radiation effects</topic><topic>Technology</topic><topic>Tomatoes</topic><topic>Transport rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yousef, Ahmed F</creatorcontrib><creatorcontrib>Ali, Muhammad M</creatorcontrib><creatorcontrib>Rizwan, Hafiz M</creatorcontrib><creatorcontrib>Ahmed, Mohamed A A</creatorcontrib><creatorcontrib>Ali, Waleed M</creatorcontrib><creatorcontrib>Kalaji, Hazem M</creatorcontrib><creatorcontrib>Elsheery, Nabil</creatorcontrib><creatorcontrib>Wróbel, Jacek</creatorcontrib><creatorcontrib>Xu, Yong</creatorcontrib><creatorcontrib>Chen, Faxing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yousef, Ahmed F</au><au>Ali, Muhammad M</au><au>Rizwan, Hafiz M</au><au>Ahmed, Mohamed A A</au><au>Ali, Waleed M</au><au>Kalaji, Hazem M</au><au>Elsheery, Nabil</au><au>Wróbel, Jacek</au><au>Xu, Yong</au><au>Chen, Faxing</au><au>Gururani, Mayank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-05-07</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><spage>e0250210</spage><pages>e0250210-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>It is already known that there are many factors responsible for the successful grafting process in plants, including light intensity. However, the influence of the spectrum of light-emitting diodes (LEDs) on this process has almost never been tested. During the pre-grafting process tomato seedlings grew for 30 days under 100 μmol m-2 s-1 of mixed LEDs (red 70%+ blue 30%). During the post-grafting period, seedlings grew for 20 days under the same light intensity but the lightening source was either red LED, mixed LEDs (red 70% + blue 30%), blue LED or white fluorescent lamps. This was done to determine which light source(s) could better improve seedling quality and increase grafting success. Our results showed that application of red and blue light mixture (R7:B3) caused significant increase in total leaf area, dry weight (total, shoot and root), total chlorophyll/carotenoid ratio, soluble protein and sugar content. Moreover, this light treatment maintained better photosynthetic performance i.e. more effective quantum yield of PSII photochemistry Y(II), better photochemical quenching (qP), and higher electron transport rate (ETR). This can be partially explained by the observed upregulation of gene expression levels of PsaA and PsbA and the parallel protein expression levels. This in turn could lead to better functioning of the photosynthetic apparatus of tomato seedlings and then to faster production of photoassimilate ready to be translocated to various tissues and organs, including those most in need, i.e., involved in the formation of the graft union.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33961648</pmid><doi>10.1371/journal.pone.0250210</doi><tpages>e0250210</tpages><orcidid>https://orcid.org/0000-0002-6614-5566</orcidid><orcidid>https://orcid.org/0000-0002-3833-4917</orcidid><orcidid>https://orcid.org/0000-0002-3092-6328</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-05, Vol.16 (5), p.e0250210 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2523090987 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agricultural engineering Agricultural production Agriculture Analysis Bioengineering Biology and Life Sciences Botany Carotenoids Carotenoids - metabolism Chlorophyll - metabolism Chloroplasts Computer programs Drafting software Durability Editing Electron transport Electronic engineering Electronic mail Engineering and Technology Environmental conditions Forestry Funding Gene expression Gene Expression Regulation, Plant Growth Horticulture Learning algorithms Light Light emitting diodes Light intensity Light sources Luminous intensity Machine learning Medicinal plants Methodology Methods Photochemicals Photochemistry Photosynthesis Photosystem II Physical Sciences Physiological effects Physiology Plant growth Plant Leaves - radiation effects Plant physiology Plant production Plant resistance Proteins RNA polymerase Seedlings Seedlings - growth & development Seedlings - radiation effects Software Solanum lycopersicum - growth & development Solanum lycopersicum - physiology Solanum lycopersicum - radiation effects Technology Tomatoes Transport rate |
title | Effects of light spectrum on morpho-physiological traits of grafted tomato seedlings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A12%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20light%20spectrum%20on%20morpho-physiological%20traits%20of%20grafted%20tomato%20seedlings&rft.jtitle=PloS%20one&rft.au=Yousef,%20Ahmed%20F&rft.date=2021-05-07&rft.volume=16&rft.issue=5&rft.spage=e0250210&rft.pages=e0250210-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0250210&rft_dat=%3Cgale_plos_%3EA661069332%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2523090987&rft_id=info:pmid/33961648&rft_galeid=A661069332&rft_doaj_id=oai_doaj_org_article_fa45282c1b8b40c8aac7d08f1bb4baca&rfr_iscdi=true |