Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients

Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-04, Vol.16 (4), p.e0240200
Hauptverfasser: Marcos, Miguel, Belhassen-García, Moncef, Sánchez-Puente, Antonio, Sampedro-Gomez, Jesús, Azibeiro, Raúl, Dorado-Díaz, Pedro-Ignacio, Marcano-Millán, Edgar, García-Vidal, Carolina, Moreiro-Barroso, María-Teresa, Cubino-Bóveda, Noelia, Pérez-García, María-Luisa, Rodríguez-Alonso, Beatriz, Encinas-Sánchez, Daniel, Peña-Balbuena, Sonia, Sobejano-Fuertes, Eduardo, Inés, Sandra, Carbonell, Cristina, López-Parra, Miriam, Andrade-Meira, Fernanda, López-Bernús, Amparo, Lorenzo, Catalina, Carpio, Adela, Polo-San-Ricardo, David, Sánchez-Hernández, Miguel-Vicente, Borrás, Rafael, Sagredo-Meneses, Víctor, Sanchez, Pedro-Luis, Soriano, Alex, Martín-Oterino, José-Ángel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e0240200
container_title PloS one
container_volume 16
creator Marcos, Miguel
Belhassen-García, Moncef
Sánchez-Puente, Antonio
Sampedro-Gomez, Jesús
Azibeiro, Raúl
Dorado-Díaz, Pedro-Ignacio
Marcano-Millán, Edgar
García-Vidal, Carolina
Moreiro-Barroso, María-Teresa
Cubino-Bóveda, Noelia
Pérez-García, María-Luisa
Rodríguez-Alonso, Beatriz
Encinas-Sánchez, Daniel
Peña-Balbuena, Sonia
Sobejano-Fuertes, Eduardo
Inés, Sandra
Carbonell, Cristina
López-Parra, Miriam
Andrade-Meira, Fernanda
López-Bernús, Amparo
Lorenzo, Catalina
Carpio, Adela
Polo-San-Ricardo, David
Sánchez-Hernández, Miguel-Vicente
Borrás, Rafael
Sagredo-Meneses, Víctor
Sanchez, Pedro-Luis
Soriano, Alex
Martín-Oterino, José-Ángel
description Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.
doi_str_mv 10.1371/journal.pone.0240200
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2516207014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659212295</galeid><doaj_id>oai_doaj_org_article_b898137880bf43dabeed06095d51ff3e</doaj_id><sourcerecordid>A659212295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKPpHVukKaOj0qTKvGxW8uxj1tPThzsZKL79Tg0mxq0C5QLxyfPeY_PG58se0nwnLAl-XDt-9BIN299A3NMc0wxfpSdkpLR2YJi9vjo_SR7FuM1xgXji8XT7IQxzile4NPs9gJuwPm2hqZD3iCJYgoE2-2HnbYRZAQUlQ-AZKORcjJGa6ySnfUNqr0Gh6o9qqXa2QaQAxka22yR8QHtfGxtJ529BY1Wm6v1xYyUqE2pqVp8nj0x0kV4Ma5n2c_Pn36svs4uN1_Wq_PLmVqUtJtVkGvIl3lhltpAwU1VVVRTogklTGkMZYGhYnmJgVNieEWJKtM2N4ybghTsLHt90G2dj2K0LQpakGTNEpM8EesDob28Fm2wtQx74aUVfwM-bIUMnVUORMVLnuznHFcmZ1pWADoZWRa6IMYwSFofx2p9VYNWqdMg3UR0-qWxO7H1N4LjouR4OMy7USD4Xz3ETtQ2KnBONuD7w7l5TgtKE_rmH_Th7kZqK1MDtjE-1VWDqDhfFCUllJaDS_MHqPRoqK1Kd8zYFJ8kvJ8kJKaD391W9jGK9fdv_89urqbs2yN2B9J1u-hdP9y3OAXzA6iCjzGAuTeZYDGMyJ0bYhgRMY5ISnt1_IPuk-5mgv0B5oIMNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516207014</pqid></control><display><type>article</type><title>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Marcos, Miguel ; Belhassen-García, Moncef ; Sánchez-Puente, Antonio ; Sampedro-Gomez, Jesús ; Azibeiro, Raúl ; Dorado-Díaz, Pedro-Ignacio ; Marcano-Millán, Edgar ; García-Vidal, Carolina ; Moreiro-Barroso, María-Teresa ; Cubino-Bóveda, Noelia ; Pérez-García, María-Luisa ; Rodríguez-Alonso, Beatriz ; Encinas-Sánchez, Daniel ; Peña-Balbuena, Sonia ; Sobejano-Fuertes, Eduardo ; Inés, Sandra ; Carbonell, Cristina ; López-Parra, Miriam ; Andrade-Meira, Fernanda ; López-Bernús, Amparo ; Lorenzo, Catalina ; Carpio, Adela ; Polo-San-Ricardo, David ; Sánchez-Hernández, Miguel-Vicente ; Borrás, Rafael ; Sagredo-Meneses, Víctor ; Sanchez, Pedro-Luis ; Soriano, Alex ; Martín-Oterino, José-Ángel</creator><contributor>Ashkenazi, Itamar</contributor><creatorcontrib>Marcos, Miguel ; Belhassen-García, Moncef ; Sánchez-Puente, Antonio ; Sampedro-Gomez, Jesús ; Azibeiro, Raúl ; Dorado-Díaz, Pedro-Ignacio ; Marcano-Millán, Edgar ; García-Vidal, Carolina ; Moreiro-Barroso, María-Teresa ; Cubino-Bóveda, Noelia ; Pérez-García, María-Luisa ; Rodríguez-Alonso, Beatriz ; Encinas-Sánchez, Daniel ; Peña-Balbuena, Sonia ; Sobejano-Fuertes, Eduardo ; Inés, Sandra ; Carbonell, Cristina ; López-Parra, Miriam ; Andrade-Meira, Fernanda ; López-Bernús, Amparo ; Lorenzo, Catalina ; Carpio, Adela ; Polo-San-Ricardo, David ; Sánchez-Hernández, Miguel-Vicente ; Borrás, Rafael ; Sagredo-Meneses, Víctor ; Sanchez, Pedro-Luis ; Soriano, Alex ; Martín-Oterino, José-Ángel ; Ashkenazi, Itamar</creatorcontrib><description>Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240200</identifier><identifier>PMID: 33882060</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Anesthesiology ; Area Under Curve ; Biology and Life Sciences ; C-reactive protein ; Cardiology ; Cohort Studies ; Comorbidity ; Computer programs ; Coronaviruses ; COVID-19 ; COVID-19 - classification ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; COVID-19 - therapy ; Data analysis ; Datasets ; Drafting software ; Editing ; Emergency medical care ; Emergency medical services ; Female ; Forecasting ; Funding ; Glomerular filtration rate ; Health aspects ; Health risks ; Hematology ; Hospitalization - statistics &amp; numerical data ; Hospitals ; Humans ; Infectious diseases ; Intelligence ; Intensive care ; Intensive care units ; Internal medicine ; Laboratories ; Learning algorithms ; Lymphocytes ; Machine Learning ; Male ; Medicine ; Medicine and Health Sciences ; Methodology ; Middle Aged ; Models, Statistical ; Oxygen ; Oxygen content ; Patients ; Peripheral blood ; Physical Sciences ; Procalcitonin ; Public health ; Respiration, Artificial ; Retrospective Studies ; Risk Assessment ; ROC Curve ; SARS-CoV-2 - isolation &amp; purification ; Sepsis ; Severe acute respiratory syndrome coronavirus 2 ; Severity of Illness Index ; Software ; Spain - epidemiology ; Statistical analysis ; Surgical site infections ; Triage - methods ; Ventilators</subject><ispartof>PloS one, 2021-04, Vol.16 (4), p.e0240200</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Marcos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Marcos et al 2021 Marcos et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</citedby><cites>FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</cites><orcidid>0000-0002-5598-5180 ; 0000-0002-8344-6328 ; 0000-0003-1269-4487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059804/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059804/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33882060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ashkenazi, Itamar</contributor><creatorcontrib>Marcos, Miguel</creatorcontrib><creatorcontrib>Belhassen-García, Moncef</creatorcontrib><creatorcontrib>Sánchez-Puente, Antonio</creatorcontrib><creatorcontrib>Sampedro-Gomez, Jesús</creatorcontrib><creatorcontrib>Azibeiro, Raúl</creatorcontrib><creatorcontrib>Dorado-Díaz, Pedro-Ignacio</creatorcontrib><creatorcontrib>Marcano-Millán, Edgar</creatorcontrib><creatorcontrib>García-Vidal, Carolina</creatorcontrib><creatorcontrib>Moreiro-Barroso, María-Teresa</creatorcontrib><creatorcontrib>Cubino-Bóveda, Noelia</creatorcontrib><creatorcontrib>Pérez-García, María-Luisa</creatorcontrib><creatorcontrib>Rodríguez-Alonso, Beatriz</creatorcontrib><creatorcontrib>Encinas-Sánchez, Daniel</creatorcontrib><creatorcontrib>Peña-Balbuena, Sonia</creatorcontrib><creatorcontrib>Sobejano-Fuertes, Eduardo</creatorcontrib><creatorcontrib>Inés, Sandra</creatorcontrib><creatorcontrib>Carbonell, Cristina</creatorcontrib><creatorcontrib>López-Parra, Miriam</creatorcontrib><creatorcontrib>Andrade-Meira, Fernanda</creatorcontrib><creatorcontrib>López-Bernús, Amparo</creatorcontrib><creatorcontrib>Lorenzo, Catalina</creatorcontrib><creatorcontrib>Carpio, Adela</creatorcontrib><creatorcontrib>Polo-San-Ricardo, David</creatorcontrib><creatorcontrib>Sánchez-Hernández, Miguel-Vicente</creatorcontrib><creatorcontrib>Borrás, Rafael</creatorcontrib><creatorcontrib>Sagredo-Meneses, Víctor</creatorcontrib><creatorcontrib>Sanchez, Pedro-Luis</creatorcontrib><creatorcontrib>Soriano, Alex</creatorcontrib><creatorcontrib>Martín-Oterino, José-Ángel</creatorcontrib><title>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Anesthesiology</subject><subject>Area Under Curve</subject><subject>Biology and Life Sciences</subject><subject>C-reactive protein</subject><subject>Cardiology</subject><subject>Cohort Studies</subject><subject>Comorbidity</subject><subject>Computer programs</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - classification</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - therapy</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Emergency medical care</subject><subject>Emergency medical services</subject><subject>Female</subject><subject>Forecasting</subject><subject>Funding</subject><subject>Glomerular filtration rate</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Hematology</subject><subject>Hospitalization - statistics &amp; numerical data</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Intelligence</subject><subject>Intensive care</subject><subject>Intensive care units</subject><subject>Internal medicine</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Lymphocytes</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Oxygen</subject><subject>Oxygen content</subject><subject>Patients</subject><subject>Peripheral blood</subject><subject>Physical Sciences</subject><subject>Procalcitonin</subject><subject>Public health</subject><subject>Respiration, Artificial</subject><subject>Retrospective Studies</subject><subject>Risk Assessment</subject><subject>ROC Curve</subject><subject>SARS-CoV-2 - isolation &amp; purification</subject><subject>Sepsis</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Severity of Illness Index</subject><subject>Software</subject><subject>Spain - epidemiology</subject><subject>Statistical analysis</subject><subject>Surgical site infections</subject><subject>Triage - methods</subject><subject>Ventilators</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKPpHVukKaOj0qTKvGxW8uxj1tPThzsZKL79Tg0mxq0C5QLxyfPeY_PG58se0nwnLAl-XDt-9BIN299A3NMc0wxfpSdkpLR2YJi9vjo_SR7FuM1xgXji8XT7IQxzile4NPs9gJuwPm2hqZD3iCJYgoE2-2HnbYRZAQUlQ-AZKORcjJGa6ySnfUNqr0Gh6o9qqXa2QaQAxka22yR8QHtfGxtJ529BY1Wm6v1xYyUqE2pqVp8nj0x0kV4Ma5n2c_Pn36svs4uN1_Wq_PLmVqUtJtVkGvIl3lhltpAwU1VVVRTogklTGkMZYGhYnmJgVNieEWJKtM2N4ybghTsLHt90G2dj2K0LQpakGTNEpM8EesDob28Fm2wtQx74aUVfwM-bIUMnVUORMVLnuznHFcmZ1pWADoZWRa6IMYwSFofx2p9VYNWqdMg3UR0-qWxO7H1N4LjouR4OMy7USD4Xz3ETtQ2KnBONuD7w7l5TgtKE_rmH_Th7kZqK1MDtjE-1VWDqDhfFCUllJaDS_MHqPRoqK1Kd8zYFJ8kvJ8kJKaD391W9jGK9fdv_89urqbs2yN2B9J1u-hdP9y3OAXzA6iCjzGAuTeZYDGMyJ0bYhgRMY5ISnt1_IPuk-5mgv0B5oIMNg</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Marcos, Miguel</creator><creator>Belhassen-García, Moncef</creator><creator>Sánchez-Puente, Antonio</creator><creator>Sampedro-Gomez, Jesús</creator><creator>Azibeiro, Raúl</creator><creator>Dorado-Díaz, Pedro-Ignacio</creator><creator>Marcano-Millán, Edgar</creator><creator>García-Vidal, Carolina</creator><creator>Moreiro-Barroso, María-Teresa</creator><creator>Cubino-Bóveda, Noelia</creator><creator>Pérez-García, María-Luisa</creator><creator>Rodríguez-Alonso, Beatriz</creator><creator>Encinas-Sánchez, Daniel</creator><creator>Peña-Balbuena, Sonia</creator><creator>Sobejano-Fuertes, Eduardo</creator><creator>Inés, Sandra</creator><creator>Carbonell, Cristina</creator><creator>López-Parra, Miriam</creator><creator>Andrade-Meira, Fernanda</creator><creator>López-Bernús, Amparo</creator><creator>Lorenzo, Catalina</creator><creator>Carpio, Adela</creator><creator>Polo-San-Ricardo, David</creator><creator>Sánchez-Hernández, Miguel-Vicente</creator><creator>Borrás, Rafael</creator><creator>Sagredo-Meneses, Víctor</creator><creator>Sanchez, Pedro-Luis</creator><creator>Soriano, Alex</creator><creator>Martín-Oterino, José-Ángel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5598-5180</orcidid><orcidid>https://orcid.org/0000-0002-8344-6328</orcidid><orcidid>https://orcid.org/0000-0003-1269-4487</orcidid></search><sort><creationdate>20210421</creationdate><title>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</title><author>Marcos, Miguel ; Belhassen-García, Moncef ; Sánchez-Puente, Antonio ; Sampedro-Gomez, Jesús ; Azibeiro, Raúl ; Dorado-Díaz, Pedro-Ignacio ; Marcano-Millán, Edgar ; García-Vidal, Carolina ; Moreiro-Barroso, María-Teresa ; Cubino-Bóveda, Noelia ; Pérez-García, María-Luisa ; Rodríguez-Alonso, Beatriz ; Encinas-Sánchez, Daniel ; Peña-Balbuena, Sonia ; Sobejano-Fuertes, Eduardo ; Inés, Sandra ; Carbonell, Cristina ; López-Parra, Miriam ; Andrade-Meira, Fernanda ; López-Bernús, Amparo ; Lorenzo, Catalina ; Carpio, Adela ; Polo-San-Ricardo, David ; Sánchez-Hernández, Miguel-Vicente ; Borrás, Rafael ; Sagredo-Meneses, Víctor ; Sanchez, Pedro-Luis ; Soriano, Alex ; Martín-Oterino, José-Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Anesthesiology</topic><topic>Area Under Curve</topic><topic>Biology and Life Sciences</topic><topic>C-reactive protein</topic><topic>Cardiology</topic><topic>Cohort Studies</topic><topic>Comorbidity</topic><topic>Computer programs</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - classification</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - therapy</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Emergency medical care</topic><topic>Emergency medical services</topic><topic>Female</topic><topic>Forecasting</topic><topic>Funding</topic><topic>Glomerular filtration rate</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Hematology</topic><topic>Hospitalization - statistics &amp; numerical data</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Intelligence</topic><topic>Intensive care</topic><topic>Intensive care units</topic><topic>Internal medicine</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Lymphocytes</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Oxygen</topic><topic>Oxygen content</topic><topic>Patients</topic><topic>Peripheral blood</topic><topic>Physical Sciences</topic><topic>Procalcitonin</topic><topic>Public health</topic><topic>Respiration, Artificial</topic><topic>Retrospective Studies</topic><topic>Risk Assessment</topic><topic>ROC Curve</topic><topic>SARS-CoV-2 - isolation &amp; purification</topic><topic>Sepsis</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Severity of Illness Index</topic><topic>Software</topic><topic>Spain - epidemiology</topic><topic>Statistical analysis</topic><topic>Surgical site infections</topic><topic>Triage - methods</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcos, Miguel</creatorcontrib><creatorcontrib>Belhassen-García, Moncef</creatorcontrib><creatorcontrib>Sánchez-Puente, Antonio</creatorcontrib><creatorcontrib>Sampedro-Gomez, Jesús</creatorcontrib><creatorcontrib>Azibeiro, Raúl</creatorcontrib><creatorcontrib>Dorado-Díaz, Pedro-Ignacio</creatorcontrib><creatorcontrib>Marcano-Millán, Edgar</creatorcontrib><creatorcontrib>García-Vidal, Carolina</creatorcontrib><creatorcontrib>Moreiro-Barroso, María-Teresa</creatorcontrib><creatorcontrib>Cubino-Bóveda, Noelia</creatorcontrib><creatorcontrib>Pérez-García, María-Luisa</creatorcontrib><creatorcontrib>Rodríguez-Alonso, Beatriz</creatorcontrib><creatorcontrib>Encinas-Sánchez, Daniel</creatorcontrib><creatorcontrib>Peña-Balbuena, Sonia</creatorcontrib><creatorcontrib>Sobejano-Fuertes, Eduardo</creatorcontrib><creatorcontrib>Inés, Sandra</creatorcontrib><creatorcontrib>Carbonell, Cristina</creatorcontrib><creatorcontrib>López-Parra, Miriam</creatorcontrib><creatorcontrib>Andrade-Meira, Fernanda</creatorcontrib><creatorcontrib>López-Bernús, Amparo</creatorcontrib><creatorcontrib>Lorenzo, Catalina</creatorcontrib><creatorcontrib>Carpio, Adela</creatorcontrib><creatorcontrib>Polo-San-Ricardo, David</creatorcontrib><creatorcontrib>Sánchez-Hernández, Miguel-Vicente</creatorcontrib><creatorcontrib>Borrás, Rafael</creatorcontrib><creatorcontrib>Sagredo-Meneses, Víctor</creatorcontrib><creatorcontrib>Sanchez, Pedro-Luis</creatorcontrib><creatorcontrib>Soriano, Alex</creatorcontrib><creatorcontrib>Martín-Oterino, José-Ángel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcos, Miguel</au><au>Belhassen-García, Moncef</au><au>Sánchez-Puente, Antonio</au><au>Sampedro-Gomez, Jesús</au><au>Azibeiro, Raúl</au><au>Dorado-Díaz, Pedro-Ignacio</au><au>Marcano-Millán, Edgar</au><au>García-Vidal, Carolina</au><au>Moreiro-Barroso, María-Teresa</au><au>Cubino-Bóveda, Noelia</au><au>Pérez-García, María-Luisa</au><au>Rodríguez-Alonso, Beatriz</au><au>Encinas-Sánchez, Daniel</au><au>Peña-Balbuena, Sonia</au><au>Sobejano-Fuertes, Eduardo</au><au>Inés, Sandra</au><au>Carbonell, Cristina</au><au>López-Parra, Miriam</au><au>Andrade-Meira, Fernanda</au><au>López-Bernús, Amparo</au><au>Lorenzo, Catalina</au><au>Carpio, Adela</au><au>Polo-San-Ricardo, David</au><au>Sánchez-Hernández, Miguel-Vicente</au><au>Borrás, Rafael</au><au>Sagredo-Meneses, Víctor</au><au>Sanchez, Pedro-Luis</au><au>Soriano, Alex</au><au>Martín-Oterino, José-Ángel</au><au>Ashkenazi, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>16</volume><issue>4</issue><spage>e0240200</spage><pages>e0240200-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33882060</pmid><doi>10.1371/journal.pone.0240200</doi><orcidid>https://orcid.org/0000-0002-5598-5180</orcidid><orcidid>https://orcid.org/0000-0002-8344-6328</orcidid><orcidid>https://orcid.org/0000-0003-1269-4487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-04, Vol.16 (4), p.e0240200
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2516207014
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Aged
Anesthesiology
Area Under Curve
Biology and Life Sciences
C-reactive protein
Cardiology
Cohort Studies
Comorbidity
Computer programs
Coronaviruses
COVID-19
COVID-19 - classification
COVID-19 - diagnosis
COVID-19 - epidemiology
COVID-19 - therapy
Data analysis
Datasets
Drafting software
Editing
Emergency medical care
Emergency medical services
Female
Forecasting
Funding
Glomerular filtration rate
Health aspects
Health risks
Hematology
Hospitalization - statistics & numerical data
Hospitals
Humans
Infectious diseases
Intelligence
Intensive care
Intensive care units
Internal medicine
Laboratories
Learning algorithms
Lymphocytes
Machine Learning
Male
Medicine
Medicine and Health Sciences
Methodology
Middle Aged
Models, Statistical
Oxygen
Oxygen content
Patients
Peripheral blood
Physical Sciences
Procalcitonin
Public health
Respiration, Artificial
Retrospective Studies
Risk Assessment
ROC Curve
SARS-CoV-2 - isolation & purification
Sepsis
Severe acute respiratory syndrome coronavirus 2
Severity of Illness Index
Software
Spain - epidemiology
Statistical analysis
Surgical site infections
Triage - methods
Ventilators
title Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20severity%20of%20disease%20score%20and%20classification%20model%20by%20machine%20learning%20for%20hospitalized%20COVID-19%20patients&rft.jtitle=PloS%20one&rft.au=Marcos,%20Miguel&rft.date=2021-04-21&rft.volume=16&rft.issue=4&rft.spage=e0240200&rft.pages=e0240200-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240200&rft_dat=%3Cgale_plos_%3EA659212295%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516207014&rft_id=info:pmid/33882060&rft_galeid=A659212295&rft_doaj_id=oai_doaj_org_article_b898137880bf43dabeed06095d51ff3e&rfr_iscdi=true