Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients
Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilatio...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-04, Vol.16 (4), p.e0240200 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e0240200 |
container_title | PloS one |
container_volume | 16 |
creator | Marcos, Miguel Belhassen-García, Moncef Sánchez-Puente, Antonio Sampedro-Gomez, Jesús Azibeiro, Raúl Dorado-Díaz, Pedro-Ignacio Marcano-Millán, Edgar García-Vidal, Carolina Moreiro-Barroso, María-Teresa Cubino-Bóveda, Noelia Pérez-García, María-Luisa Rodríguez-Alonso, Beatriz Encinas-Sánchez, Daniel Peña-Balbuena, Sonia Sobejano-Fuertes, Eduardo Inés, Sandra Carbonell, Cristina López-Parra, Miriam Andrade-Meira, Fernanda López-Bernús, Amparo Lorenzo, Catalina Carpio, Adela Polo-San-Ricardo, David Sánchez-Hernández, Miguel-Vicente Borrás, Rafael Sagredo-Meneses, Víctor Sanchez, Pedro-Luis Soriano, Alex Martín-Oterino, José-Ángel |
description | Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management.
We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity.
A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression.
This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients. |
doi_str_mv | 10.1371/journal.pone.0240200 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2516207014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A659212295</galeid><doaj_id>oai_doaj_org_article_b898137880bf43dabeed06095d51ff3e</doaj_id><sourcerecordid>A659212295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</originalsourceid><addsrcrecordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKPpHVukKaOj0qTKvGxW8uxj1tPThzsZKL79Tg0mxq0C5QLxyfPeY_PG58se0nwnLAl-XDt-9BIN299A3NMc0wxfpSdkpLR2YJi9vjo_SR7FuM1xgXji8XT7IQxzile4NPs9gJuwPm2hqZD3iCJYgoE2-2HnbYRZAQUlQ-AZKORcjJGa6ySnfUNqr0Gh6o9qqXa2QaQAxka22yR8QHtfGxtJ529BY1Wm6v1xYyUqE2pqVp8nj0x0kV4Ma5n2c_Pn36svs4uN1_Wq_PLmVqUtJtVkGvIl3lhltpAwU1VVVRTogklTGkMZYGhYnmJgVNieEWJKtM2N4ybghTsLHt90G2dj2K0LQpakGTNEpM8EesDob28Fm2wtQx74aUVfwM-bIUMnVUORMVLnuznHFcmZ1pWADoZWRa6IMYwSFofx2p9VYNWqdMg3UR0-qWxO7H1N4LjouR4OMy7USD4Xz3ETtQ2KnBONuD7w7l5TgtKE_rmH_Th7kZqK1MDtjE-1VWDqDhfFCUllJaDS_MHqPRoqK1Kd8zYFJ8kvJ8kJKaD391W9jGK9fdv_89urqbs2yN2B9J1u-hdP9y3OAXzA6iCjzGAuTeZYDGMyJ0bYhgRMY5ISnt1_IPuk-5mgv0B5oIMNg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2516207014</pqid></control><display><type>article</type><title>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Marcos, Miguel ; Belhassen-García, Moncef ; Sánchez-Puente, Antonio ; Sampedro-Gomez, Jesús ; Azibeiro, Raúl ; Dorado-Díaz, Pedro-Ignacio ; Marcano-Millán, Edgar ; García-Vidal, Carolina ; Moreiro-Barroso, María-Teresa ; Cubino-Bóveda, Noelia ; Pérez-García, María-Luisa ; Rodríguez-Alonso, Beatriz ; Encinas-Sánchez, Daniel ; Peña-Balbuena, Sonia ; Sobejano-Fuertes, Eduardo ; Inés, Sandra ; Carbonell, Cristina ; López-Parra, Miriam ; Andrade-Meira, Fernanda ; López-Bernús, Amparo ; Lorenzo, Catalina ; Carpio, Adela ; Polo-San-Ricardo, David ; Sánchez-Hernández, Miguel-Vicente ; Borrás, Rafael ; Sagredo-Meneses, Víctor ; Sanchez, Pedro-Luis ; Soriano, Alex ; Martín-Oterino, José-Ángel</creator><contributor>Ashkenazi, Itamar</contributor><creatorcontrib>Marcos, Miguel ; Belhassen-García, Moncef ; Sánchez-Puente, Antonio ; Sampedro-Gomez, Jesús ; Azibeiro, Raúl ; Dorado-Díaz, Pedro-Ignacio ; Marcano-Millán, Edgar ; García-Vidal, Carolina ; Moreiro-Barroso, María-Teresa ; Cubino-Bóveda, Noelia ; Pérez-García, María-Luisa ; Rodríguez-Alonso, Beatriz ; Encinas-Sánchez, Daniel ; Peña-Balbuena, Sonia ; Sobejano-Fuertes, Eduardo ; Inés, Sandra ; Carbonell, Cristina ; López-Parra, Miriam ; Andrade-Meira, Fernanda ; López-Bernús, Amparo ; Lorenzo, Catalina ; Carpio, Adela ; Polo-San-Ricardo, David ; Sánchez-Hernández, Miguel-Vicente ; Borrás, Rafael ; Sagredo-Meneses, Víctor ; Sanchez, Pedro-Luis ; Soriano, Alex ; Martín-Oterino, José-Ángel ; Ashkenazi, Itamar</creatorcontrib><description>Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management.
We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity.
A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression.
This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0240200</identifier><identifier>PMID: 33882060</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Anesthesiology ; Area Under Curve ; Biology and Life Sciences ; C-reactive protein ; Cardiology ; Cohort Studies ; Comorbidity ; Computer programs ; Coronaviruses ; COVID-19 ; COVID-19 - classification ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; COVID-19 - therapy ; Data analysis ; Datasets ; Drafting software ; Editing ; Emergency medical care ; Emergency medical services ; Female ; Forecasting ; Funding ; Glomerular filtration rate ; Health aspects ; Health risks ; Hematology ; Hospitalization - statistics & numerical data ; Hospitals ; Humans ; Infectious diseases ; Intelligence ; Intensive care ; Intensive care units ; Internal medicine ; Laboratories ; Learning algorithms ; Lymphocytes ; Machine Learning ; Male ; Medicine ; Medicine and Health Sciences ; Methodology ; Middle Aged ; Models, Statistical ; Oxygen ; Oxygen content ; Patients ; Peripheral blood ; Physical Sciences ; Procalcitonin ; Public health ; Respiration, Artificial ; Retrospective Studies ; Risk Assessment ; ROC Curve ; SARS-CoV-2 - isolation & purification ; Sepsis ; Severe acute respiratory syndrome coronavirus 2 ; Severity of Illness Index ; Software ; Spain - epidemiology ; Statistical analysis ; Surgical site infections ; Triage - methods ; Ventilators</subject><ispartof>PloS one, 2021-04, Vol.16 (4), p.e0240200</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Marcos et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Marcos et al 2021 Marcos et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</citedby><cites>FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</cites><orcidid>0000-0002-5598-5180 ; 0000-0002-8344-6328 ; 0000-0003-1269-4487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059804/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059804/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33882060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ashkenazi, Itamar</contributor><creatorcontrib>Marcos, Miguel</creatorcontrib><creatorcontrib>Belhassen-García, Moncef</creatorcontrib><creatorcontrib>Sánchez-Puente, Antonio</creatorcontrib><creatorcontrib>Sampedro-Gomez, Jesús</creatorcontrib><creatorcontrib>Azibeiro, Raúl</creatorcontrib><creatorcontrib>Dorado-Díaz, Pedro-Ignacio</creatorcontrib><creatorcontrib>Marcano-Millán, Edgar</creatorcontrib><creatorcontrib>García-Vidal, Carolina</creatorcontrib><creatorcontrib>Moreiro-Barroso, María-Teresa</creatorcontrib><creatorcontrib>Cubino-Bóveda, Noelia</creatorcontrib><creatorcontrib>Pérez-García, María-Luisa</creatorcontrib><creatorcontrib>Rodríguez-Alonso, Beatriz</creatorcontrib><creatorcontrib>Encinas-Sánchez, Daniel</creatorcontrib><creatorcontrib>Peña-Balbuena, Sonia</creatorcontrib><creatorcontrib>Sobejano-Fuertes, Eduardo</creatorcontrib><creatorcontrib>Inés, Sandra</creatorcontrib><creatorcontrib>Carbonell, Cristina</creatorcontrib><creatorcontrib>López-Parra, Miriam</creatorcontrib><creatorcontrib>Andrade-Meira, Fernanda</creatorcontrib><creatorcontrib>López-Bernús, Amparo</creatorcontrib><creatorcontrib>Lorenzo, Catalina</creatorcontrib><creatorcontrib>Carpio, Adela</creatorcontrib><creatorcontrib>Polo-San-Ricardo, David</creatorcontrib><creatorcontrib>Sánchez-Hernández, Miguel-Vicente</creatorcontrib><creatorcontrib>Borrás, Rafael</creatorcontrib><creatorcontrib>Sagredo-Meneses, Víctor</creatorcontrib><creatorcontrib>Sanchez, Pedro-Luis</creatorcontrib><creatorcontrib>Soriano, Alex</creatorcontrib><creatorcontrib>Martín-Oterino, José-Ángel</creatorcontrib><title>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management.
We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity.
A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression.
This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.</description><subject>Adult</subject><subject>Aged</subject><subject>Anesthesiology</subject><subject>Area Under Curve</subject><subject>Biology and Life Sciences</subject><subject>C-reactive protein</subject><subject>Cardiology</subject><subject>Cohort Studies</subject><subject>Comorbidity</subject><subject>Computer programs</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - classification</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - therapy</subject><subject>Data analysis</subject><subject>Datasets</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Emergency medical care</subject><subject>Emergency medical services</subject><subject>Female</subject><subject>Forecasting</subject><subject>Funding</subject><subject>Glomerular filtration rate</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>Hematology</subject><subject>Hospitalization - statistics & numerical data</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Intelligence</subject><subject>Intensive care</subject><subject>Intensive care units</subject><subject>Internal medicine</subject><subject>Laboratories</subject><subject>Learning algorithms</subject><subject>Lymphocytes</subject><subject>Machine Learning</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Oxygen</subject><subject>Oxygen content</subject><subject>Patients</subject><subject>Peripheral blood</subject><subject>Physical Sciences</subject><subject>Procalcitonin</subject><subject>Public health</subject><subject>Respiration, Artificial</subject><subject>Retrospective Studies</subject><subject>Risk Assessment</subject><subject>ROC Curve</subject><subject>SARS-CoV-2 - isolation & purification</subject><subject>Sepsis</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Severity of Illness Index</subject><subject>Software</subject><subject>Spain - epidemiology</subject><subject>Statistical analysis</subject><subject>Surgical site infections</subject><subject>Triage - methods</subject><subject>Ventilators</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11v0zAUhiMEYmPwDxBYQkJw0eKPpHVukKaOj0qTKvGxW8uxj1tPThzsZKL79Tg0mxq0C5QLxyfPeY_PG58se0nwnLAl-XDt-9BIN299A3NMc0wxfpSdkpLR2YJi9vjo_SR7FuM1xgXji8XT7IQxzile4NPs9gJuwPm2hqZD3iCJYgoE2-2HnbYRZAQUlQ-AZKORcjJGa6ySnfUNqr0Gh6o9qqXa2QaQAxka22yR8QHtfGxtJ529BY1Wm6v1xYyUqE2pqVp8nj0x0kV4Ma5n2c_Pn36svs4uN1_Wq_PLmVqUtJtVkGvIl3lhltpAwU1VVVRTogklTGkMZYGhYnmJgVNieEWJKtM2N4ybghTsLHt90G2dj2K0LQpakGTNEpM8EesDob28Fm2wtQx74aUVfwM-bIUMnVUORMVLnuznHFcmZ1pWADoZWRa6IMYwSFofx2p9VYNWqdMg3UR0-qWxO7H1N4LjouR4OMy7USD4Xz3ETtQ2KnBONuD7w7l5TgtKE_rmH_Th7kZqK1MDtjE-1VWDqDhfFCUllJaDS_MHqPRoqK1Kd8zYFJ8kvJ8kJKaD391W9jGK9fdv_89urqbs2yN2B9J1u-hdP9y3OAXzA6iCjzGAuTeZYDGMyJ0bYhgRMY5ISnt1_IPuk-5mgv0B5oIMNg</recordid><startdate>20210421</startdate><enddate>20210421</enddate><creator>Marcos, Miguel</creator><creator>Belhassen-García, Moncef</creator><creator>Sánchez-Puente, Antonio</creator><creator>Sampedro-Gomez, Jesús</creator><creator>Azibeiro, Raúl</creator><creator>Dorado-Díaz, Pedro-Ignacio</creator><creator>Marcano-Millán, Edgar</creator><creator>García-Vidal, Carolina</creator><creator>Moreiro-Barroso, María-Teresa</creator><creator>Cubino-Bóveda, Noelia</creator><creator>Pérez-García, María-Luisa</creator><creator>Rodríguez-Alonso, Beatriz</creator><creator>Encinas-Sánchez, Daniel</creator><creator>Peña-Balbuena, Sonia</creator><creator>Sobejano-Fuertes, Eduardo</creator><creator>Inés, Sandra</creator><creator>Carbonell, Cristina</creator><creator>López-Parra, Miriam</creator><creator>Andrade-Meira, Fernanda</creator><creator>López-Bernús, Amparo</creator><creator>Lorenzo, Catalina</creator><creator>Carpio, Adela</creator><creator>Polo-San-Ricardo, David</creator><creator>Sánchez-Hernández, Miguel-Vicente</creator><creator>Borrás, Rafael</creator><creator>Sagredo-Meneses, Víctor</creator><creator>Sanchez, Pedro-Luis</creator><creator>Soriano, Alex</creator><creator>Martín-Oterino, José-Ángel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5598-5180</orcidid><orcidid>https://orcid.org/0000-0002-8344-6328</orcidid><orcidid>https://orcid.org/0000-0003-1269-4487</orcidid></search><sort><creationdate>20210421</creationdate><title>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</title><author>Marcos, Miguel ; Belhassen-García, Moncef ; Sánchez-Puente, Antonio ; Sampedro-Gomez, Jesús ; Azibeiro, Raúl ; Dorado-Díaz, Pedro-Ignacio ; Marcano-Millán, Edgar ; García-Vidal, Carolina ; Moreiro-Barroso, María-Teresa ; Cubino-Bóveda, Noelia ; Pérez-García, María-Luisa ; Rodríguez-Alonso, Beatriz ; Encinas-Sánchez, Daniel ; Peña-Balbuena, Sonia ; Sobejano-Fuertes, Eduardo ; Inés, Sandra ; Carbonell, Cristina ; López-Parra, Miriam ; Andrade-Meira, Fernanda ; López-Bernús, Amparo ; Lorenzo, Catalina ; Carpio, Adela ; Polo-San-Ricardo, David ; Sánchez-Hernández, Miguel-Vicente ; Borrás, Rafael ; Sagredo-Meneses, Víctor ; Sanchez, Pedro-Luis ; Soriano, Alex ; Martín-Oterino, José-Ángel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-be4de4745f7dfe58fbbb2d21d1213cd0e950eb3490e821f8b21c93494f38f5153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Anesthesiology</topic><topic>Area Under Curve</topic><topic>Biology and Life Sciences</topic><topic>C-reactive protein</topic><topic>Cardiology</topic><topic>Cohort Studies</topic><topic>Comorbidity</topic><topic>Computer programs</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - classification</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - therapy</topic><topic>Data analysis</topic><topic>Datasets</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Emergency medical care</topic><topic>Emergency medical services</topic><topic>Female</topic><topic>Forecasting</topic><topic>Funding</topic><topic>Glomerular filtration rate</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>Hematology</topic><topic>Hospitalization - statistics & numerical data</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Intelligence</topic><topic>Intensive care</topic><topic>Intensive care units</topic><topic>Internal medicine</topic><topic>Laboratories</topic><topic>Learning algorithms</topic><topic>Lymphocytes</topic><topic>Machine Learning</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Oxygen</topic><topic>Oxygen content</topic><topic>Patients</topic><topic>Peripheral blood</topic><topic>Physical Sciences</topic><topic>Procalcitonin</topic><topic>Public health</topic><topic>Respiration, Artificial</topic><topic>Retrospective Studies</topic><topic>Risk Assessment</topic><topic>ROC Curve</topic><topic>SARS-CoV-2 - isolation & purification</topic><topic>Sepsis</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Severity of Illness Index</topic><topic>Software</topic><topic>Spain - epidemiology</topic><topic>Statistical analysis</topic><topic>Surgical site infections</topic><topic>Triage - methods</topic><topic>Ventilators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marcos, Miguel</creatorcontrib><creatorcontrib>Belhassen-García, Moncef</creatorcontrib><creatorcontrib>Sánchez-Puente, Antonio</creatorcontrib><creatorcontrib>Sampedro-Gomez, Jesús</creatorcontrib><creatorcontrib>Azibeiro, Raúl</creatorcontrib><creatorcontrib>Dorado-Díaz, Pedro-Ignacio</creatorcontrib><creatorcontrib>Marcano-Millán, Edgar</creatorcontrib><creatorcontrib>García-Vidal, Carolina</creatorcontrib><creatorcontrib>Moreiro-Barroso, María-Teresa</creatorcontrib><creatorcontrib>Cubino-Bóveda, Noelia</creatorcontrib><creatorcontrib>Pérez-García, María-Luisa</creatorcontrib><creatorcontrib>Rodríguez-Alonso, Beatriz</creatorcontrib><creatorcontrib>Encinas-Sánchez, Daniel</creatorcontrib><creatorcontrib>Peña-Balbuena, Sonia</creatorcontrib><creatorcontrib>Sobejano-Fuertes, Eduardo</creatorcontrib><creatorcontrib>Inés, Sandra</creatorcontrib><creatorcontrib>Carbonell, Cristina</creatorcontrib><creatorcontrib>López-Parra, Miriam</creatorcontrib><creatorcontrib>Andrade-Meira, Fernanda</creatorcontrib><creatorcontrib>López-Bernús, Amparo</creatorcontrib><creatorcontrib>Lorenzo, Catalina</creatorcontrib><creatorcontrib>Carpio, Adela</creatorcontrib><creatorcontrib>Polo-San-Ricardo, David</creatorcontrib><creatorcontrib>Sánchez-Hernández, Miguel-Vicente</creatorcontrib><creatorcontrib>Borrás, Rafael</creatorcontrib><creatorcontrib>Sagredo-Meneses, Víctor</creatorcontrib><creatorcontrib>Sanchez, Pedro-Luis</creatorcontrib><creatorcontrib>Soriano, Alex</creatorcontrib><creatorcontrib>Martín-Oterino, José-Ángel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marcos, Miguel</au><au>Belhassen-García, Moncef</au><au>Sánchez-Puente, Antonio</au><au>Sampedro-Gomez, Jesús</au><au>Azibeiro, Raúl</au><au>Dorado-Díaz, Pedro-Ignacio</au><au>Marcano-Millán, Edgar</au><au>García-Vidal, Carolina</au><au>Moreiro-Barroso, María-Teresa</au><au>Cubino-Bóveda, Noelia</au><au>Pérez-García, María-Luisa</au><au>Rodríguez-Alonso, Beatriz</au><au>Encinas-Sánchez, Daniel</au><au>Peña-Balbuena, Sonia</au><au>Sobejano-Fuertes, Eduardo</au><au>Inés, Sandra</au><au>Carbonell, Cristina</au><au>López-Parra, Miriam</au><au>Andrade-Meira, Fernanda</au><au>López-Bernús, Amparo</au><au>Lorenzo, Catalina</au><au>Carpio, Adela</au><au>Polo-San-Ricardo, David</au><au>Sánchez-Hernández, Miguel-Vicente</au><au>Borrás, Rafael</au><au>Sagredo-Meneses, Víctor</au><au>Sanchez, Pedro-Luis</au><au>Soriano, Alex</au><au>Martín-Oterino, José-Ángel</au><au>Ashkenazi, Itamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-04-21</date><risdate>2021</risdate><volume>16</volume><issue>4</issue><spage>e0240200</spage><pages>e0240200-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management.
We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity.
A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression.
This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33882060</pmid><doi>10.1371/journal.pone.0240200</doi><orcidid>https://orcid.org/0000-0002-5598-5180</orcidid><orcidid>https://orcid.org/0000-0002-8344-6328</orcidid><orcidid>https://orcid.org/0000-0003-1269-4487</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-04, Vol.16 (4), p.e0240200 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2516207014 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adult Aged Anesthesiology Area Under Curve Biology and Life Sciences C-reactive protein Cardiology Cohort Studies Comorbidity Computer programs Coronaviruses COVID-19 COVID-19 - classification COVID-19 - diagnosis COVID-19 - epidemiology COVID-19 - therapy Data analysis Datasets Drafting software Editing Emergency medical care Emergency medical services Female Forecasting Funding Glomerular filtration rate Health aspects Health risks Hematology Hospitalization - statistics & numerical data Hospitals Humans Infectious diseases Intelligence Intensive care Intensive care units Internal medicine Laboratories Learning algorithms Lymphocytes Machine Learning Male Medicine Medicine and Health Sciences Methodology Middle Aged Models, Statistical Oxygen Oxygen content Patients Peripheral blood Physical Sciences Procalcitonin Public health Respiration, Artificial Retrospective Studies Risk Assessment ROC Curve SARS-CoV-2 - isolation & purification Sepsis Severe acute respiratory syndrome coronavirus 2 Severity of Illness Index Software Spain - epidemiology Statistical analysis Surgical site infections Triage - methods Ventilators |
title | Development of a severity of disease score and classification model by machine learning for hospitalized COVID-19 patients |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20severity%20of%20disease%20score%20and%20classification%20model%20by%20machine%20learning%20for%20hospitalized%20COVID-19%20patients&rft.jtitle=PloS%20one&rft.au=Marcos,%20Miguel&rft.date=2021-04-21&rft.volume=16&rft.issue=4&rft.spage=e0240200&rft.pages=e0240200-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0240200&rft_dat=%3Cgale_plos_%3EA659212295%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2516207014&rft_id=info:pmid/33882060&rft_galeid=A659212295&rft_doaj_id=oai_doaj_org_article_b898137880bf43dabeed06095d51ff3e&rfr_iscdi=true |