A novel cell culture system modeling the SARS-CoV-2 life cycle

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2021-03, Vol.17 (3), p.e1009439
Hauptverfasser: Ju, Xiaohui, Zhu, Yunkai, Wang, Yuyan, Li, Jingrui, Zhang, Jiaxing, Gong, Mingli, Ren, Wenlin, Li, Sai, Zhong, Jin, Zhang, Linqi, Zhang, Qiangfeng Cliff, Zhang, Rong, Ding, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e1009439
container_title PLoS pathogens
container_volume 17
creator Ju, Xiaohui
Zhu, Yunkai
Wang, Yuyan
Li, Jingrui
Zhang, Jiaxing
Gong, Mingli
Ren, Wenlin
Li, Sai
Zhong, Jin
Zhang, Linqi
Zhang, Qiangfeng Cliff
Zhang, Rong
Ding, Qiang
description Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.
doi_str_mv 10.1371/journal.ppat.1009439
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513689992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658715106</galeid><doaj_id>oai_doaj_org_article_df280045ebf4425eac4ddda8b2cee92f</doaj_id><sourcerecordid>A658715106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</originalsourceid><addsrcrecordid>eNqVkttq3DAQhk1paQ7tG5TWkKtceKuzrJvAsvSwEFrItr0VsjR2vMjW1rJD9-2rdJ2QhfaiCCQx-v5fM8Nk2RuMFphK_H4bpqE3frHbmXGBEVKMqmfZKeacFpJK9vzJ_SQ7i3GLEMMUi5fZCU0GGJXkNLta5n24A59b8Gmb_DgNkMd9HKHLu-DAt32Tj7eQb5Y3m2IVfhQk920Nud1bD6-yF7XxEV7P53n2_eOHb6vPxfXXT-vV8rqwQuCxYIxgBoggjig1FJdKSoYEcVTZWgpcWcnBEUtcRWuuBKO8dKo01khhnFT0PHt38N35EPVcetSEYypKpRRJxPpAuGC2eje0nRn2OphW_wmEodFmGNuUs3Y1KVMvOFR1SoyDscw5Z8qKWABF6uR1Nf82VR04C_04GH9kevzSt7e6CXdaKoUIYcngYjYYws8J4viPlGeqMSmrtq9DMrNdG61eCl5KzDESiVr8hUrLQdfa0EPdpviR4PJIkJgRfo2NmWLU683Nf7Bfjll2YO0QYhygfmwIRvp-JB-K1PcjqeeRTLK3T5v5KHqYQfobHnXaPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513689992</pqid></control><display><type>article</type><title>A novel cell culture system modeling the SARS-CoV-2 life cycle</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Ju, Xiaohui ; Zhu, Yunkai ; Wang, Yuyan ; Li, Jingrui ; Zhang, Jiaxing ; Gong, Mingli ; Ren, Wenlin ; Li, Sai ; Zhong, Jin ; Zhang, Linqi ; Zhang, Qiangfeng Cliff ; Zhang, Rong ; Ding, Qiang</creator><creatorcontrib>Ju, Xiaohui ; Zhu, Yunkai ; Wang, Yuyan ; Li, Jingrui ; Zhang, Jiaxing ; Gong, Mingli ; Ren, Wenlin ; Li, Sai ; Zhong, Jin ; Zhang, Linqi ; Zhang, Qiangfeng Cliff ; Zhang, Rong ; Ding, Qiang</creatorcontrib><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009439</identifier><identifier>PMID: 33711082</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenocarcinoma ; Antiviral Agents - pharmacology ; Artificial chromosomes ; Biology and life sciences ; Biotechnology ; Cell culture ; Cell Culture Techniques - methods ; Cloning ; Containment of Biohazards ; Coronaviruses ; COVID-19 ; COVID-19 - virology ; Deoxyribonucleic acid ; DNA ; DNA-directed RNA polymerase ; Experiments ; Flow cytometry ; Genetic aspects ; Genome, Viral - drug effects ; Genomes ; High-Throughput Screening Assays ; Humans ; Infections ; Laboratory tests ; Life cycles ; Life cycles (Biology) ; Medicine and health sciences ; Methods ; Microscopy ; N protein ; Nucleotides ; Packaging ; Physiological aspects ; Poly(A) ; Polyadenylation ; Polymerase chain reaction ; Proteins ; Reporter gene ; Research and Analysis Methods ; RNA polymerase ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - genetics ; SARS-CoV-2 - growth &amp; development ; SARS-CoV-2 - physiology ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Transcription ; Tumor cell lines ; Viral diseases ; Virus Replication - drug effects ; Virus research ; Viruses</subject><ispartof>PLoS pathogens, 2021-03, Vol.17 (3), p.e1009439</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ju et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ju et al 2021 Ju et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</citedby><cites>FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</cites><orcidid>0000-0002-9353-0355 ; 0000-0002-4913-0338 ; 0000-0003-2941-4808 ; 0000-0002-7290-0935 ; 0000-0003-4931-509X ; 0000-0002-9552-0222 ; 0000-0002-3554-1275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33711082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Yunkai</creatorcontrib><creatorcontrib>Wang, Yuyan</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Gong, Mingli</creatorcontrib><creatorcontrib>Ren, Wenlin</creatorcontrib><creatorcontrib>Li, Sai</creatorcontrib><creatorcontrib>Zhong, Jin</creatorcontrib><creatorcontrib>Zhang, Linqi</creatorcontrib><creatorcontrib>Zhang, Qiangfeng Cliff</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ding, Qiang</creatorcontrib><title>A novel cell culture system modeling the SARS-CoV-2 life cycle</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.</description><subject>Adenocarcinoma</subject><subject>Antiviral Agents - pharmacology</subject><subject>Artificial chromosomes</subject><subject>Biology and life sciences</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cloning</subject><subject>Containment of Biohazards</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - virology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-directed RNA polymerase</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Genetic aspects</subject><subject>Genome, Viral - drug effects</subject><subject>Genomes</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Infections</subject><subject>Laboratory tests</subject><subject>Life cycles</subject><subject>Life cycles (Biology)</subject><subject>Medicine and health sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>N protein</subject><subject>Nucleotides</subject><subject>Packaging</subject><subject>Physiological aspects</subject><subject>Poly(A)</subject><subject>Polyadenylation</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Reporter gene</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - growth &amp; development</subject><subject>SARS-CoV-2 - physiology</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Transcription</subject><subject>Tumor cell lines</subject><subject>Viral diseases</subject><subject>Virus Replication - drug effects</subject><subject>Virus research</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkttq3DAQhk1paQ7tG5TWkKtceKuzrJvAsvSwEFrItr0VsjR2vMjW1rJD9-2rdJ2QhfaiCCQx-v5fM8Nk2RuMFphK_H4bpqE3frHbmXGBEVKMqmfZKeacFpJK9vzJ_SQ7i3GLEMMUi5fZCU0GGJXkNLta5n24A59b8Gmb_DgNkMd9HKHLu-DAt32Tj7eQb5Y3m2IVfhQk920Nud1bD6-yF7XxEV7P53n2_eOHb6vPxfXXT-vV8rqwQuCxYIxgBoggjig1FJdKSoYEcVTZWgpcWcnBEUtcRWuuBKO8dKo01khhnFT0PHt38N35EPVcetSEYypKpRRJxPpAuGC2eje0nRn2OphW_wmEodFmGNuUs3Y1KVMvOFR1SoyDscw5Z8qKWABF6uR1Nf82VR04C_04GH9kevzSt7e6CXdaKoUIYcngYjYYws8J4viPlGeqMSmrtq9DMrNdG61eCl5KzDESiVr8hUrLQdfa0EPdpviR4PJIkJgRfo2NmWLU683Nf7Bfjll2YO0QYhygfmwIRvp-JB-K1PcjqeeRTLK3T5v5KHqYQfobHnXaPQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ju, Xiaohui</creator><creator>Zhu, Yunkai</creator><creator>Wang, Yuyan</creator><creator>Li, Jingrui</creator><creator>Zhang, Jiaxing</creator><creator>Gong, Mingli</creator><creator>Ren, Wenlin</creator><creator>Li, Sai</creator><creator>Zhong, Jin</creator><creator>Zhang, Linqi</creator><creator>Zhang, Qiangfeng Cliff</creator><creator>Zhang, Rong</creator><creator>Ding, Qiang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9353-0355</orcidid><orcidid>https://orcid.org/0000-0002-4913-0338</orcidid><orcidid>https://orcid.org/0000-0003-2941-4808</orcidid><orcidid>https://orcid.org/0000-0002-7290-0935</orcidid><orcidid>https://orcid.org/0000-0003-4931-509X</orcidid><orcidid>https://orcid.org/0000-0002-9552-0222</orcidid><orcidid>https://orcid.org/0000-0002-3554-1275</orcidid></search><sort><creationdate>20210301</creationdate><title>A novel cell culture system modeling the SARS-CoV-2 life cycle</title><author>Ju, Xiaohui ; Zhu, Yunkai ; Wang, Yuyan ; Li, Jingrui ; Zhang, Jiaxing ; Gong, Mingli ; Ren, Wenlin ; Li, Sai ; Zhong, Jin ; Zhang, Linqi ; Zhang, Qiangfeng Cliff ; Zhang, Rong ; Ding, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenocarcinoma</topic><topic>Antiviral Agents - pharmacology</topic><topic>Artificial chromosomes</topic><topic>Biology and life sciences</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cloning</topic><topic>Containment of Biohazards</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - virology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-directed RNA polymerase</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Genetic aspects</topic><topic>Genome, Viral - drug effects</topic><topic>Genomes</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Infections</topic><topic>Laboratory tests</topic><topic>Life cycles</topic><topic>Life cycles (Biology)</topic><topic>Medicine and health sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>N protein</topic><topic>Nucleotides</topic><topic>Packaging</topic><topic>Physiological aspects</topic><topic>Poly(A)</topic><topic>Polyadenylation</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Reporter gene</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - growth &amp; development</topic><topic>SARS-CoV-2 - physiology</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Transcription</topic><topic>Tumor cell lines</topic><topic>Viral diseases</topic><topic>Virus Replication - drug effects</topic><topic>Virus research</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Yunkai</creatorcontrib><creatorcontrib>Wang, Yuyan</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Gong, Mingli</creatorcontrib><creatorcontrib>Ren, Wenlin</creatorcontrib><creatorcontrib>Li, Sai</creatorcontrib><creatorcontrib>Zhong, Jin</creatorcontrib><creatorcontrib>Zhang, Linqi</creatorcontrib><creatorcontrib>Zhang, Qiangfeng Cliff</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ding, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Xiaohui</au><au>Zhu, Yunkai</au><au>Wang, Yuyan</au><au>Li, Jingrui</au><au>Zhang, Jiaxing</au><au>Gong, Mingli</au><au>Ren, Wenlin</au><au>Li, Sai</au><au>Zhong, Jin</au><au>Zhang, Linqi</au><au>Zhang, Qiangfeng Cliff</au><au>Zhang, Rong</au><au>Ding, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel cell culture system modeling the SARS-CoV-2 life cycle</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>e1009439</spage><pages>e1009439-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33711082</pmid><doi>10.1371/journal.ppat.1009439</doi><orcidid>https://orcid.org/0000-0002-9353-0355</orcidid><orcidid>https://orcid.org/0000-0002-4913-0338</orcidid><orcidid>https://orcid.org/0000-0003-2941-4808</orcidid><orcidid>https://orcid.org/0000-0002-7290-0935</orcidid><orcidid>https://orcid.org/0000-0003-4931-509X</orcidid><orcidid>https://orcid.org/0000-0002-9552-0222</orcidid><orcidid>https://orcid.org/0000-0002-3554-1275</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2021-03, Vol.17 (3), p.e1009439
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2513689992
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Adenocarcinoma
Antiviral Agents - pharmacology
Artificial chromosomes
Biology and life sciences
Biotechnology
Cell culture
Cell Culture Techniques - methods
Cloning
Containment of Biohazards
Coronaviruses
COVID-19
COVID-19 - virology
Deoxyribonucleic acid
DNA
DNA-directed RNA polymerase
Experiments
Flow cytometry
Genetic aspects
Genome, Viral - drug effects
Genomes
High-Throughput Screening Assays
Humans
Infections
Laboratory tests
Life cycles
Life cycles (Biology)
Medicine and health sciences
Methods
Microscopy
N protein
Nucleotides
Packaging
Physiological aspects
Poly(A)
Polyadenylation
Polymerase chain reaction
Proteins
Reporter gene
Research and Analysis Methods
RNA polymerase
SARS-CoV-2 - drug effects
SARS-CoV-2 - genetics
SARS-CoV-2 - growth & development
SARS-CoV-2 - physiology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Transcription
Tumor cell lines
Viral diseases
Virus Replication - drug effects
Virus research
Viruses
title A novel cell culture system modeling the SARS-CoV-2 life cycle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20cell%20culture%20system%20modeling%20the%20SARS-CoV-2%20life%20cycle&rft.jtitle=PLoS%20pathogens&rft.au=Ju,%20Xiaohui&rft.date=2021-03-01&rft.volume=17&rft.issue=3&rft.spage=e1009439&rft.pages=e1009439-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009439&rft_dat=%3Cgale_plos_%3EA658715106%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513689992&rft_id=info:pmid/33711082&rft_galeid=A658715106&rft_doaj_id=oai_doaj_org_article_df280045ebf4425eac4ddda8b2cee92f&rfr_iscdi=true