A novel cell culture system modeling the SARS-CoV-2 life cycle
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2)...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2021-03, Vol.17 (3), p.e1009439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e1009439 |
container_title | PLoS pathogens |
container_volume | 17 |
creator | Ju, Xiaohui Zhu, Yunkai Wang, Yuyan Li, Jingrui Zhang, Jiaxing Gong, Mingli Ren, Wenlin Li, Sai Zhong, Jin Zhang, Linqi Zhang, Qiangfeng Cliff Zhang, Rong Ding, Qiang |
description | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development. |
doi_str_mv | 10.1371/journal.ppat.1009439 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513689992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658715106</galeid><doaj_id>oai_doaj_org_article_df280045ebf4425eac4ddda8b2cee92f</doaj_id><sourcerecordid>A658715106</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</originalsourceid><addsrcrecordid>eNqVkttq3DAQhk1paQ7tG5TWkKtceKuzrJvAsvSwEFrItr0VsjR2vMjW1rJD9-2rdJ2QhfaiCCQx-v5fM8Nk2RuMFphK_H4bpqE3frHbmXGBEVKMqmfZKeacFpJK9vzJ_SQ7i3GLEMMUi5fZCU0GGJXkNLta5n24A59b8Gmb_DgNkMd9HKHLu-DAt32Tj7eQb5Y3m2IVfhQk920Nud1bD6-yF7XxEV7P53n2_eOHb6vPxfXXT-vV8rqwQuCxYIxgBoggjig1FJdKSoYEcVTZWgpcWcnBEUtcRWuuBKO8dKo01khhnFT0PHt38N35EPVcetSEYypKpRRJxPpAuGC2eje0nRn2OphW_wmEodFmGNuUs3Y1KVMvOFR1SoyDscw5Z8qKWABF6uR1Nf82VR04C_04GH9kevzSt7e6CXdaKoUIYcngYjYYws8J4viPlGeqMSmrtq9DMrNdG61eCl5KzDESiVr8hUrLQdfa0EPdpviR4PJIkJgRfo2NmWLU683Nf7Bfjll2YO0QYhygfmwIRvp-JB-K1PcjqeeRTLK3T5v5KHqYQfobHnXaPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513689992</pqid></control><display><type>article</type><title>A novel cell culture system modeling the SARS-CoV-2 life cycle</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Ju, Xiaohui ; Zhu, Yunkai ; Wang, Yuyan ; Li, Jingrui ; Zhang, Jiaxing ; Gong, Mingli ; Ren, Wenlin ; Li, Sai ; Zhong, Jin ; Zhang, Linqi ; Zhang, Qiangfeng Cliff ; Zhang, Rong ; Ding, Qiang</creator><creatorcontrib>Ju, Xiaohui ; Zhu, Yunkai ; Wang, Yuyan ; Li, Jingrui ; Zhang, Jiaxing ; Gong, Mingli ; Ren, Wenlin ; Li, Sai ; Zhong, Jin ; Zhang, Linqi ; Zhang, Qiangfeng Cliff ; Zhang, Rong ; Ding, Qiang</creatorcontrib><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1009439</identifier><identifier>PMID: 33711082</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenocarcinoma ; Antiviral Agents - pharmacology ; Artificial chromosomes ; Biology and life sciences ; Biotechnology ; Cell culture ; Cell Culture Techniques - methods ; Cloning ; Containment of Biohazards ; Coronaviruses ; COVID-19 ; COVID-19 - virology ; Deoxyribonucleic acid ; DNA ; DNA-directed RNA polymerase ; Experiments ; Flow cytometry ; Genetic aspects ; Genome, Viral - drug effects ; Genomes ; High-Throughput Screening Assays ; Humans ; Infections ; Laboratory tests ; Life cycles ; Life cycles (Biology) ; Medicine and health sciences ; Methods ; Microscopy ; N protein ; Nucleotides ; Packaging ; Physiological aspects ; Poly(A) ; Polyadenylation ; Polymerase chain reaction ; Proteins ; Reporter gene ; Research and Analysis Methods ; RNA polymerase ; SARS-CoV-2 - drug effects ; SARS-CoV-2 - genetics ; SARS-CoV-2 - growth & development ; SARS-CoV-2 - physiology ; Severe acute respiratory syndrome ; Severe acute respiratory syndrome coronavirus 2 ; Transcription ; Tumor cell lines ; Viral diseases ; Virus Replication - drug effects ; Virus research ; Viruses</subject><ispartof>PLoS pathogens, 2021-03, Vol.17 (3), p.e1009439</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Ju et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Ju et al 2021 Ju et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</citedby><cites>FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</cites><orcidid>0000-0002-9353-0355 ; 0000-0002-4913-0338 ; 0000-0003-2941-4808 ; 0000-0002-7290-0935 ; 0000-0003-4931-509X ; 0000-0002-9552-0222 ; 0000-0002-3554-1275</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990224/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990224/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33711082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Yunkai</creatorcontrib><creatorcontrib>Wang, Yuyan</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Gong, Mingli</creatorcontrib><creatorcontrib>Ren, Wenlin</creatorcontrib><creatorcontrib>Li, Sai</creatorcontrib><creatorcontrib>Zhong, Jin</creatorcontrib><creatorcontrib>Zhang, Linqi</creatorcontrib><creatorcontrib>Zhang, Qiangfeng Cliff</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ding, Qiang</creatorcontrib><title>A novel cell culture system modeling the SARS-CoV-2 life cycle</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.</description><subject>Adenocarcinoma</subject><subject>Antiviral Agents - pharmacology</subject><subject>Artificial chromosomes</subject><subject>Biology and life sciences</subject><subject>Biotechnology</subject><subject>Cell culture</subject><subject>Cell Culture Techniques - methods</subject><subject>Cloning</subject><subject>Containment of Biohazards</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - virology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-directed RNA polymerase</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Genetic aspects</subject><subject>Genome, Viral - drug effects</subject><subject>Genomes</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Infections</subject><subject>Laboratory tests</subject><subject>Life cycles</subject><subject>Life cycles (Biology)</subject><subject>Medicine and health sciences</subject><subject>Methods</subject><subject>Microscopy</subject><subject>N protein</subject><subject>Nucleotides</subject><subject>Packaging</subject><subject>Physiological aspects</subject><subject>Poly(A)</subject><subject>Polyadenylation</subject><subject>Polymerase chain reaction</subject><subject>Proteins</subject><subject>Reporter gene</subject><subject>Research and Analysis Methods</subject><subject>RNA polymerase</subject><subject>SARS-CoV-2 - drug effects</subject><subject>SARS-CoV-2 - genetics</subject><subject>SARS-CoV-2 - growth & development</subject><subject>SARS-CoV-2 - physiology</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Transcription</subject><subject>Tumor cell lines</subject><subject>Viral diseases</subject><subject>Virus Replication - drug effects</subject><subject>Virus research</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkttq3DAQhk1paQ7tG5TWkKtceKuzrJvAsvSwEFrItr0VsjR2vMjW1rJD9-2rdJ2QhfaiCCQx-v5fM8Nk2RuMFphK_H4bpqE3frHbmXGBEVKMqmfZKeacFpJK9vzJ_SQ7i3GLEMMUi5fZCU0GGJXkNLta5n24A59b8Gmb_DgNkMd9HKHLu-DAt32Tj7eQb5Y3m2IVfhQk920Nud1bD6-yF7XxEV7P53n2_eOHb6vPxfXXT-vV8rqwQuCxYIxgBoggjig1FJdKSoYEcVTZWgpcWcnBEUtcRWuuBKO8dKo01khhnFT0PHt38N35EPVcetSEYypKpRRJxPpAuGC2eje0nRn2OphW_wmEodFmGNuUs3Y1KVMvOFR1SoyDscw5Z8qKWABF6uR1Nf82VR04C_04GH9kevzSt7e6CXdaKoUIYcngYjYYws8J4viPlGeqMSmrtq9DMrNdG61eCl5KzDESiVr8hUrLQdfa0EPdpviR4PJIkJgRfo2NmWLU683Nf7Bfjll2YO0QYhygfmwIRvp-JB-K1PcjqeeRTLK3T5v5KHqYQfobHnXaPQ</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Ju, Xiaohui</creator><creator>Zhu, Yunkai</creator><creator>Wang, Yuyan</creator><creator>Li, Jingrui</creator><creator>Zhang, Jiaxing</creator><creator>Gong, Mingli</creator><creator>Ren, Wenlin</creator><creator>Li, Sai</creator><creator>Zhong, Jin</creator><creator>Zhang, Linqi</creator><creator>Zhang, Qiangfeng Cliff</creator><creator>Zhang, Rong</creator><creator>Ding, Qiang</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9353-0355</orcidid><orcidid>https://orcid.org/0000-0002-4913-0338</orcidid><orcidid>https://orcid.org/0000-0003-2941-4808</orcidid><orcidid>https://orcid.org/0000-0002-7290-0935</orcidid><orcidid>https://orcid.org/0000-0003-4931-509X</orcidid><orcidid>https://orcid.org/0000-0002-9552-0222</orcidid><orcidid>https://orcid.org/0000-0002-3554-1275</orcidid></search><sort><creationdate>20210301</creationdate><title>A novel cell culture system modeling the SARS-CoV-2 life cycle</title><author>Ju, Xiaohui ; Zhu, Yunkai ; Wang, Yuyan ; Li, Jingrui ; Zhang, Jiaxing ; Gong, Mingli ; Ren, Wenlin ; Li, Sai ; Zhong, Jin ; Zhang, Linqi ; Zhang, Qiangfeng Cliff ; Zhang, Rong ; Ding, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-44214e0205033a3189774062d39cf761bc75ed2c2db3f5964358d98aca76ad793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenocarcinoma</topic><topic>Antiviral Agents - pharmacology</topic><topic>Artificial chromosomes</topic><topic>Biology and life sciences</topic><topic>Biotechnology</topic><topic>Cell culture</topic><topic>Cell Culture Techniques - methods</topic><topic>Cloning</topic><topic>Containment of Biohazards</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - virology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-directed RNA polymerase</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Genetic aspects</topic><topic>Genome, Viral - drug effects</topic><topic>Genomes</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Infections</topic><topic>Laboratory tests</topic><topic>Life cycles</topic><topic>Life cycles (Biology)</topic><topic>Medicine and health sciences</topic><topic>Methods</topic><topic>Microscopy</topic><topic>N protein</topic><topic>Nucleotides</topic><topic>Packaging</topic><topic>Physiological aspects</topic><topic>Poly(A)</topic><topic>Polyadenylation</topic><topic>Polymerase chain reaction</topic><topic>Proteins</topic><topic>Reporter gene</topic><topic>Research and Analysis Methods</topic><topic>RNA polymerase</topic><topic>SARS-CoV-2 - drug effects</topic><topic>SARS-CoV-2 - genetics</topic><topic>SARS-CoV-2 - growth & development</topic><topic>SARS-CoV-2 - physiology</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Transcription</topic><topic>Tumor cell lines</topic><topic>Viral diseases</topic><topic>Virus Replication - drug effects</topic><topic>Virus research</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Xiaohui</creatorcontrib><creatorcontrib>Zhu, Yunkai</creatorcontrib><creatorcontrib>Wang, Yuyan</creatorcontrib><creatorcontrib>Li, Jingrui</creatorcontrib><creatorcontrib>Zhang, Jiaxing</creatorcontrib><creatorcontrib>Gong, Mingli</creatorcontrib><creatorcontrib>Ren, Wenlin</creatorcontrib><creatorcontrib>Li, Sai</creatorcontrib><creatorcontrib>Zhong, Jin</creatorcontrib><creatorcontrib>Zhang, Linqi</creatorcontrib><creatorcontrib>Zhang, Qiangfeng Cliff</creatorcontrib><creatorcontrib>Zhang, Rong</creatorcontrib><creatorcontrib>Ding, Qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Xiaohui</au><au>Zhu, Yunkai</au><au>Wang, Yuyan</au><au>Li, Jingrui</au><au>Zhang, Jiaxing</au><au>Gong, Mingli</au><au>Ren, Wenlin</au><au>Li, Sai</au><au>Zhong, Jin</au><au>Zhang, Linqi</au><au>Zhang, Qiangfeng Cliff</au><au>Zhang, Rong</au><au>Ding, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel cell culture system modeling the SARS-CoV-2 life cycle</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>e1009439</spage><pages>e1009439-</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the global pandemic of COVID-19. SARS-CoV-2 is classified as a biosafety level-3 (BSL-3) agent, impeding the basic research into its biology and the development of effective antivirals. Here, we developed a biosafety level-2 (BSL-2) cell culture system for production of transcription and replication-competent SARS-CoV-2 virus-like-particles (trVLP). This trVLP expresses a reporter gene (GFP) replacing viral nucleocapsid gene (N), which is required for viral genome packaging and virion assembly (SARS-CoV-2 GFP/ΔN trVLP). The complete viral life cycle can be achieved and exclusively confined in the cells ectopically expressing SARS-CoV or SARS-CoV-2 N proteins, but not MERS-CoV N. Genetic recombination of N supplied in trans into viral genome was not detected, as evidenced by sequence analysis after one-month serial passages in the N-expressing cells. Moreover, intein-mediated protein trans-splicing approach was utilized to split the viral N gene into two independent vectors, and the ligated viral N protein could function in trans to recapitulate entire viral life cycle, further securing the biosafety of this cell culture model. Based on this BSL-2 SARS-CoV-2 cell culture model, we developed a 96-well format high throughput screening for antivirals discovery. We identified salinomycin, tubeimoside I, monensin sodium, lycorine chloride and nigericin sodium as potent antivirals against SARS-CoV-2 infection. Collectively, we developed a convenient and efficient SARS-CoV-2 reverse genetics tool to dissect the virus life cycle under a BSL-2 condition. This powerful tool should accelerate our understanding of SARS-CoV-2 biology and its antiviral development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33711082</pmid><doi>10.1371/journal.ppat.1009439</doi><orcidid>https://orcid.org/0000-0002-9353-0355</orcidid><orcidid>https://orcid.org/0000-0002-4913-0338</orcidid><orcidid>https://orcid.org/0000-0003-2941-4808</orcidid><orcidid>https://orcid.org/0000-0002-7290-0935</orcidid><orcidid>https://orcid.org/0000-0003-4931-509X</orcidid><orcidid>https://orcid.org/0000-0002-9552-0222</orcidid><orcidid>https://orcid.org/0000-0002-3554-1275</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2021-03, Vol.17 (3), p.e1009439 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2513689992 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Adenocarcinoma Antiviral Agents - pharmacology Artificial chromosomes Biology and life sciences Biotechnology Cell culture Cell Culture Techniques - methods Cloning Containment of Biohazards Coronaviruses COVID-19 COVID-19 - virology Deoxyribonucleic acid DNA DNA-directed RNA polymerase Experiments Flow cytometry Genetic aspects Genome, Viral - drug effects Genomes High-Throughput Screening Assays Humans Infections Laboratory tests Life cycles Life cycles (Biology) Medicine and health sciences Methods Microscopy N protein Nucleotides Packaging Physiological aspects Poly(A) Polyadenylation Polymerase chain reaction Proteins Reporter gene Research and Analysis Methods RNA polymerase SARS-CoV-2 - drug effects SARS-CoV-2 - genetics SARS-CoV-2 - growth & development SARS-CoV-2 - physiology Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Transcription Tumor cell lines Viral diseases Virus Replication - drug effects Virus research Viruses |
title | A novel cell culture system modeling the SARS-CoV-2 life cycle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20cell%20culture%20system%20modeling%20the%20SARS-CoV-2%20life%20cycle&rft.jtitle=PLoS%20pathogens&rft.au=Ju,%20Xiaohui&rft.date=2021-03-01&rft.volume=17&rft.issue=3&rft.spage=e1009439&rft.pages=e1009439-&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1009439&rft_dat=%3Cgale_plos_%3EA658715106%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513689992&rft_id=info:pmid/33711082&rft_galeid=A658715106&rft_doaj_id=oai_doaj_org_article_df280045ebf4425eac4ddda8b2cee92f&rfr_iscdi=true |