Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells

Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of huma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-03, Vol.17 (3), p.e1008778-e1008778
Hauptverfasser: Brown, Jared, Barry, Christopher, Schmitz, Matthew T, Argus, Cara, Bolin, Jennifer M, Schwartz, Michael P, Van Aartsen, Amy, Steill, John, Swanson, Scott, Stewart, Ron, Thomson, James A, Kendziorski, Christina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008778
container_issue 3
container_start_page e1008778
container_title PLoS computational biology
container_volume 17
creator Brown, Jared
Barry, Christopher
Schmitz, Matthew T
Argus, Cara
Bolin, Jennifer M
Schwartz, Michael P
Van Aartsen, Amy
Steill, John
Swanson, Scott
Stewart, Ron
Thomson, James A
Kendziorski, Christina
description Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.
doi_str_mv 10.1371/journal.pcbi.1008778
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513684106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658715139</galeid><doaj_id>oai_doaj_org_article_c8c89b8e35e94610b7bc51983a0d7e5e</doaj_id><sourcerecordid>A658715139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-ff01b9f42c92f6f2eee05678b01ad9c4f74aa3f9a7d28c125e5ae7642e0dbaff3</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBY4gKHXew4fuSCVFU8VqpA4nHFcpzxrldJnNpOBd8eh02rLuoF-WBr5jf_eXiK4jnBa0IFebv3Uxh0tx5N49YEYymEfFCcEsboSlAmH955nxRPYtxjnJ81f1ycUMorgQk_LX5uhgQhjmAcRGR2rofgDDJ-aF1yfohIWwsmobQD1MI1dH7sYUi6Q0EnQN6i3dTrAY3dFNzoU_ahmKBHBrouPi0eWd1FeLbcZ8WPD--_X3xaXX75uLk4v1wZzklaWYtJU9uqNHVpuS0BADMuZIOJbmtTWVFpTW2tRVtKQ0oGTIPgVQm4bXKB9Kx4edAdOx_VMpqoSkYolxXBPBObA9F6vVdjcL0Ov5XXTv01-LBVOiRnOlBGGlk3EiiDuuIEN6IxjNSSatwKYJC13i3ZpqaH1uSeg-6ORI89g9uprb9Wos46Yi7m9SIQ_NUEManexXlgegA_5bqrmlVYEFpl9NU_6P3dLdRW5wbcYH3Oa2ZRdc6ZFCSjdabW91D5tNC7_OVgXbYfBbw5CshMgl9pq6cY1ebb1_9gPx-z1YE1wccYwN7OjmA1b_dNk2rebrVsdw57cXfut0E360z_AFqI93c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513684106</pqid></control><display><type>article</type><title>Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Brown, Jared ; Barry, Christopher ; Schmitz, Matthew T ; Argus, Cara ; Bolin, Jennifer M ; Schwartz, Michael P ; Van Aartsen, Amy ; Steill, John ; Swanson, Scott ; Stewart, Ron ; Thomson, James A ; Kendziorski, Christina</creator><contributor>Patil, Kiran Raosaheb</contributor><creatorcontrib>Brown, Jared ; Barry, Christopher ; Schmitz, Matthew T ; Argus, Cara ; Bolin, Jennifer M ; Schwartz, Michael P ; Van Aartsen, Amy ; Steill, John ; Swanson, Scott ; Stewart, Ron ; Thomson, James A ; Kendziorski, Christina ; Patil, Kiran Raosaheb</creatorcontrib><description>Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008778</identifier><identifier>PMID: 33647016</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Cell culture ; Cell cycle ; Cell differentiation ; Comparative analysis ; Correlation analysis ; Data analysis ; Differentiation ; Gene expression ; Genetic aspects ; Identification and classification ; Methods ; Microscopy ; Neurogenesis ; Neurons ; Pluripotency ; Quality control ; Regenerative medicine ; Regression analysis ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Segmentation ; Stem cell research ; Stem cell transplantation ; Stem cells ; Transcriptomes ; Trends</subject><ispartof>PLoS computational biology, 2021-03, Vol.17 (3), p.e1008778-e1008778</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Brown et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Brown et al 2021 Brown et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-ff01b9f42c92f6f2eee05678b01ad9c4f74aa3f9a7d28c125e5ae7642e0dbaff3</citedby><cites>FETCH-LOGICAL-c661t-ff01b9f42c92f6f2eee05678b01ad9c4f74aa3f9a7d28c125e5ae7642e0dbaff3</cites><orcidid>0000-0001-6337-6812 ; 0000-0002-6177-8161 ; 0000-0002-5413-5918 ; 0000-0002-7584-5062 ; 0000-0002-2502-6982 ; 0000-0003-3785-6606 ; 0000-0002-3314-0515 ; 0000-0003-2994-3400 ; 0000-0002-9151-4386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951976/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951976/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33647016$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Patil, Kiran Raosaheb</contributor><creatorcontrib>Brown, Jared</creatorcontrib><creatorcontrib>Barry, Christopher</creatorcontrib><creatorcontrib>Schmitz, Matthew T</creatorcontrib><creatorcontrib>Argus, Cara</creatorcontrib><creatorcontrib>Bolin, Jennifer M</creatorcontrib><creatorcontrib>Schwartz, Michael P</creatorcontrib><creatorcontrib>Van Aartsen, Amy</creatorcontrib><creatorcontrib>Steill, John</creatorcontrib><creatorcontrib>Swanson, Scott</creatorcontrib><creatorcontrib>Stewart, Ron</creatorcontrib><creatorcontrib>Thomson, James A</creatorcontrib><creatorcontrib>Kendziorski, Christina</creatorcontrib><title>Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.</description><subject>Biology and Life Sciences</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell differentiation</subject><subject>Comparative analysis</subject><subject>Correlation analysis</subject><subject>Data analysis</subject><subject>Differentiation</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Identification and classification</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Neurogenesis</subject><subject>Neurons</subject><subject>Pluripotency</subject><subject>Quality control</subject><subject>Regenerative medicine</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Segmentation</subject><subject>Stem cell research</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transcriptomes</subject><subject>Trends</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBY4gKHXew4fuSCVFU8VqpA4nHFcpzxrldJnNpOBd8eh02rLuoF-WBr5jf_eXiK4jnBa0IFebv3Uxh0tx5N49YEYymEfFCcEsboSlAmH955nxRPYtxjnJ81f1ycUMorgQk_LX5uhgQhjmAcRGR2rofgDDJ-aF1yfohIWwsmobQD1MI1dH7sYUi6Q0EnQN6i3dTrAY3dFNzoU_ahmKBHBrouPi0eWd1FeLbcZ8WPD--_X3xaXX75uLk4v1wZzklaWYtJU9uqNHVpuS0BADMuZIOJbmtTWVFpTW2tRVtKQ0oGTIPgVQm4bXKB9Kx4edAdOx_VMpqoSkYolxXBPBObA9F6vVdjcL0Ov5XXTv01-LBVOiRnOlBGGlk3EiiDuuIEN6IxjNSSatwKYJC13i3ZpqaH1uSeg-6ORI89g9uprb9Wos46Yi7m9SIQ_NUEManexXlgegA_5bqrmlVYEFpl9NU_6P3dLdRW5wbcYH3Oa2ZRdc6ZFCSjdabW91D5tNC7_OVgXbYfBbw5CshMgl9pq6cY1ebb1_9gPx-z1YE1wccYwN7OjmA1b_dNk2rebrVsdw57cXfut0E360z_AFqI93c</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Brown, Jared</creator><creator>Barry, Christopher</creator><creator>Schmitz, Matthew T</creator><creator>Argus, Cara</creator><creator>Bolin, Jennifer M</creator><creator>Schwartz, Michael P</creator><creator>Van Aartsen, Amy</creator><creator>Steill, John</creator><creator>Swanson, Scott</creator><creator>Stewart, Ron</creator><creator>Thomson, James A</creator><creator>Kendziorski, Christina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6337-6812</orcidid><orcidid>https://orcid.org/0000-0002-6177-8161</orcidid><orcidid>https://orcid.org/0000-0002-5413-5918</orcidid><orcidid>https://orcid.org/0000-0002-7584-5062</orcidid><orcidid>https://orcid.org/0000-0002-2502-6982</orcidid><orcidid>https://orcid.org/0000-0003-3785-6606</orcidid><orcidid>https://orcid.org/0000-0002-3314-0515</orcidid><orcidid>https://orcid.org/0000-0003-2994-3400</orcidid><orcidid>https://orcid.org/0000-0002-9151-4386</orcidid></search><sort><creationdate>202103</creationdate><title>Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells</title><author>Brown, Jared ; Barry, Christopher ; Schmitz, Matthew T ; Argus, Cara ; Bolin, Jennifer M ; Schwartz, Michael P ; Van Aartsen, Amy ; Steill, John ; Swanson, Scott ; Stewart, Ron ; Thomson, James A ; Kendziorski, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-ff01b9f42c92f6f2eee05678b01ad9c4f74aa3f9a7d28c125e5ae7642e0dbaff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biology and Life Sciences</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell differentiation</topic><topic>Comparative analysis</topic><topic>Correlation analysis</topic><topic>Data analysis</topic><topic>Differentiation</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Identification and classification</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Neurogenesis</topic><topic>Neurons</topic><topic>Pluripotency</topic><topic>Quality control</topic><topic>Regenerative medicine</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Segmentation</topic><topic>Stem cell research</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transcriptomes</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Jared</creatorcontrib><creatorcontrib>Barry, Christopher</creatorcontrib><creatorcontrib>Schmitz, Matthew T</creatorcontrib><creatorcontrib>Argus, Cara</creatorcontrib><creatorcontrib>Bolin, Jennifer M</creatorcontrib><creatorcontrib>Schwartz, Michael P</creatorcontrib><creatorcontrib>Van Aartsen, Amy</creatorcontrib><creatorcontrib>Steill, John</creatorcontrib><creatorcontrib>Swanson, Scott</creatorcontrib><creatorcontrib>Stewart, Ron</creatorcontrib><creatorcontrib>Thomson, James A</creatorcontrib><creatorcontrib>Kendziorski, Christina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Jared</au><au>Barry, Christopher</au><au>Schmitz, Matthew T</au><au>Argus, Cara</au><au>Bolin, Jennifer M</au><au>Schwartz, Michael P</au><au>Van Aartsen, Amy</au><au>Steill, John</au><au>Swanson, Scott</au><au>Stewart, Ron</au><au>Thomson, James A</au><au>Kendziorski, Christina</au><au>Patil, Kiran Raosaheb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-03</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>e1008778</spage><epage>e1008778</epage><pages>e1008778-e1008778</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Human pluripotent stem cells hold significant promise for regenerative medicine. However, long differentiation protocols and immature characteristics of stem cell-derived cell types remain challenges to the development of many therapeutic applications. In contrast to the slow differentiation of human stem cells in vitro that mirrors a nine-month gestation period, mouse stem cells develop according to a much faster three-week gestation timeline. Here, we tested if co-differentiation with mouse pluripotent stem cells could accelerate the differentiation speed of human embryonic stem cells. Following a six-week RNA-sequencing time course of neural differentiation, we identified 929 human genes that were upregulated earlier and 535 genes that exhibited earlier peaked expression profiles in chimeric cell cultures than in human cell cultures alone. Genes with accelerated upregulation were significantly enriched in Gene Ontology terms associated with neurogenesis, neuron differentiation and maturation, and synapse signaling. Moreover, chimeric mixed samples correlated with in utero human embryonic samples earlier than human cells alone, and acceleration was dose-dependent on human-mouse co-culture ratios. The altered gene expression patterns and developmental rates described in this report have implications for accelerating human stem cell differentiation and the use of interspecies chimeric embryos in developing human organs for transplantation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33647016</pmid><doi>10.1371/journal.pcbi.1008778</doi><orcidid>https://orcid.org/0000-0001-6337-6812</orcidid><orcidid>https://orcid.org/0000-0002-6177-8161</orcidid><orcidid>https://orcid.org/0000-0002-5413-5918</orcidid><orcidid>https://orcid.org/0000-0002-7584-5062</orcidid><orcidid>https://orcid.org/0000-0002-2502-6982</orcidid><orcidid>https://orcid.org/0000-0003-3785-6606</orcidid><orcidid>https://orcid.org/0000-0002-3314-0515</orcidid><orcidid>https://orcid.org/0000-0003-2994-3400</orcidid><orcidid>https://orcid.org/0000-0002-9151-4386</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-03, Vol.17 (3), p.e1008778-e1008778
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2513684106
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Biology and Life Sciences
Cell culture
Cell cycle
Cell differentiation
Comparative analysis
Correlation analysis
Data analysis
Differentiation
Gene expression
Genetic aspects
Identification and classification
Methods
Microscopy
Neurogenesis
Neurons
Pluripotency
Quality control
Regenerative medicine
Regression analysis
Research and Analysis Methods
Ribonucleic acid
RNA
Segmentation
Stem cell research
Stem cell transplantation
Stem cells
Transcriptomes
Trends
title Interspecies chimeric conditions affect the developmental rate of human pluripotent stem cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A16%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interspecies%20chimeric%20conditions%20affect%20the%20developmental%20rate%20of%20human%20pluripotent%20stem%20cells&rft.jtitle=PLoS%20computational%20biology&rft.au=Brown,%20Jared&rft.date=2021-03&rft.volume=17&rft.issue=3&rft.spage=e1008778&rft.epage=e1008778&rft.pages=e1008778-e1008778&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008778&rft_dat=%3Cgale_plos_%3EA658715139%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513684106&rft_id=info:pmid/33647016&rft_galeid=A658715139&rft_doaj_id=oai_doaj_org_article_c8c89b8e35e94610b7bc51983a0d7e5e&rfr_iscdi=true