Testing, tracing and isolation in compartmental models
Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the applica...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-03, Vol.17 (3), p.e1008633-e1008633 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008633 |
---|---|
container_issue | 3 |
container_start_page | e1008633 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Sturniolo, Simone Waites, William Colbourn, Tim Manheim, David Panovska-Griffiths, Jasmina |
description | Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the application of agent- or individual-based models (ABM). However ABMs are complex, less well-understood and much more computationally expensive. This paper presents a new method for accurately including the effects of Testing, contact-Tracing and Isolation (TTI) strategies in standard compartmental models. We derive our method using a careful probabilistic argument to show how contact tracing at the individual level is reflected in aggregate on the population level. We show that the resultant SEIR-TTI model accurately approximates the behaviour of a mechanistic agent-based model at far less computational cost. The computational efficiency is such that it can be easily and cheaply used for exploratory modelling to quantify the required levels of testing and tracing, alone and with other interventions, to assist adaptive planning for managing disease outbreaks. |
doi_str_mv | 10.1371/journal.pcbi.1008633 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513684101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658715177</galeid><doaj_id>oai_doaj_org_article_cf29f9e346e34191833551fc0fc2d0be</doaj_id><sourcerecordid>A658715177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-8c7ea0b9e610da99f9b98e43f0305066d92d138f5caab405c399595426fa45f33</originalsourceid><addsrcrecordid>eNqVkl2L1TAQhoso7rr6D0QL3ih4jkmnSZMbYVn8OLAo6Hod0jSpOaTJMWlF_72pp7tsZW-khA7pM-_MO52ieIrRFkOD3-zDFL1024Nq7RYjxCjAveIUEwKbBgi7fys-KR6ltEcoh5w-LE4AKMWMsdOCXuk0Wt-_LscoVQ5K6bvSpuDkaIMvrS9VGA4yjoP2o3TlEDrt0uPigZEu6SfL-6z49v7d1cXHzeXnD7uL88uNygXGDVONlqjlmmLUSc4NbznTNRgEiCBKO151GJghSsq2RkQB54STuqJG1sQAnBXPj7oHF5JYLCdREQyU1RjhTOyORBfkXhyiHWT8LYK04u9FiL3IzVvltFCmyh1oqGk-mGMGQAg2ChlVdajVWevtUm1qB92p7DhKtxJdf_H2u-jDT9FwqDCZm3m5CMTwY8qTFYNNSjsnvQ5T7rvmrOYNQSSjL_5B73a3UL3MBqw3Yf5Ns6g4p4Q1uWjTZGp7B5WfTg9WBa-NzferhFerhMyM-tfYyyklsfv65T_YT2u2PrIqhpSiNjezw0jMW3ttUsxbK5atzWnPbs_9Jul6TeEPz-_mSg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513684101</pqid></control><display><type>article</type><title>Testing, tracing and isolation in compartmental models</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sturniolo, Simone ; Waites, William ; Colbourn, Tim ; Manheim, David ; Panovska-Griffiths, Jasmina</creator><contributor>Regoes, Roland R.</contributor><creatorcontrib>Sturniolo, Simone ; Waites, William ; Colbourn, Tim ; Manheim, David ; Panovska-Griffiths, Jasmina ; Regoes, Roland R.</creatorcontrib><description>Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the application of agent- or individual-based models (ABM). However ABMs are complex, less well-understood and much more computationally expensive. This paper presents a new method for accurately including the effects of Testing, contact-Tracing and Isolation (TTI) strategies in standard compartmental models. We derive our method using a careful probabilistic argument to show how contact tracing at the individual level is reflected in aggregate on the population level. We show that the resultant SEIR-TTI model accurately approximates the behaviour of a mechanistic agent-based model at far less computational cost. The computational efficiency is such that it can be easily and cheaply used for exploratory modelling to quantify the required levels of testing and tracing, alone and with other interventions, to assist adaptive planning for managing disease outbreaks.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008633</identifier><identifier>PMID: 33661888</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Basic Reproduction Number - statistics & numerical data ; Biology and Life Sciences ; Compartmental analysis (Biology) ; Computational Biology ; Computer and Information Sciences ; Computer Simulation ; Contact ; Contact tracing ; Contact Tracing - methods ; Contact Tracing - statistics & numerical data ; Control ; Coronaviruses ; COVID-19 ; COVID-19 - diagnosis ; COVID-19 - epidemiology ; COVID-19 - transmission ; COVID-19 Testing - methods ; COVID-19 Testing - statistics & numerical data ; Decision making ; Disease transmission ; Ebola virus ; Epidemics ; Epidemics - statistics & numerical data ; HIV ; Human immunodeficiency virus ; Humans ; Infectious diseases ; Influenza ; Isolation (Hospital care) ; Mathematical Concepts ; Mathematical models ; Medicine and Health Sciences ; Methods ; Model testing ; Models, Biological ; Models, Statistical ; Ordinary differential equations ; Pandemics ; Physical Sciences ; Plague ; Population ; Public health ; Quarantine - methods ; Quarantine - statistics & numerical data ; Realism ; Research and Analysis Methods ; SARS-CoV-2 ; Severe acute respiratory syndrome coronavirus 2 ; Social distancing ; Social Sciences ; Software ; Statistics ; Systems Analysis ; United Kingdom ; Vaccination ; Viral diseases ; Viruses</subject><ispartof>PLoS computational biology, 2021-03, Vol.17 (3), p.e1008633-e1008633</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Sturniolo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Sturniolo et al 2021 Sturniolo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-8c7ea0b9e610da99f9b98e43f0305066d92d138f5caab405c399595426fa45f33</citedby><cites>FETCH-LOGICAL-c661t-8c7ea0b9e610da99f9b98e43f0305066d92d138f5caab405c399595426fa45f33</cites><orcidid>0000-0003-4851-1144 ; 0000-0002-7759-6805 ; 0000-0001-8599-8380 ; 0000-0002-6917-6552 ; 0000-0002-7720-1121</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932151/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932151/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33661888$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Regoes, Roland R.</contributor><creatorcontrib>Sturniolo, Simone</creatorcontrib><creatorcontrib>Waites, William</creatorcontrib><creatorcontrib>Colbourn, Tim</creatorcontrib><creatorcontrib>Manheim, David</creatorcontrib><creatorcontrib>Panovska-Griffiths, Jasmina</creatorcontrib><title>Testing, tracing and isolation in compartmental models</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the application of agent- or individual-based models (ABM). However ABMs are complex, less well-understood and much more computationally expensive. This paper presents a new method for accurately including the effects of Testing, contact-Tracing and Isolation (TTI) strategies in standard compartmental models. We derive our method using a careful probabilistic argument to show how contact tracing at the individual level is reflected in aggregate on the population level. We show that the resultant SEIR-TTI model accurately approximates the behaviour of a mechanistic agent-based model at far less computational cost. The computational efficiency is such that it can be easily and cheaply used for exploratory modelling to quantify the required levels of testing and tracing, alone and with other interventions, to assist adaptive planning for managing disease outbreaks.</description><subject>Basic Reproduction Number - statistics & numerical data</subject><subject>Biology and Life Sciences</subject><subject>Compartmental analysis (Biology)</subject><subject>Computational Biology</subject><subject>Computer and Information Sciences</subject><subject>Computer Simulation</subject><subject>Contact</subject><subject>Contact tracing</subject><subject>Contact Tracing - methods</subject><subject>Contact Tracing - statistics & numerical data</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - diagnosis</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - transmission</subject><subject>COVID-19 Testing - methods</subject><subject>COVID-19 Testing - statistics & numerical data</subject><subject>Decision making</subject><subject>Disease transmission</subject><subject>Ebola virus</subject><subject>Epidemics</subject><subject>Epidemics - statistics & numerical data</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Infectious diseases</subject><subject>Influenza</subject><subject>Isolation (Hospital care)</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Model testing</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Ordinary differential equations</subject><subject>Pandemics</subject><subject>Physical Sciences</subject><subject>Plague</subject><subject>Population</subject><subject>Public health</subject><subject>Quarantine - methods</subject><subject>Quarantine - statistics & numerical data</subject><subject>Realism</subject><subject>Research and Analysis Methods</subject><subject>SARS-CoV-2</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Social distancing</subject><subject>Social Sciences</subject><subject>Software</subject><subject>Statistics</subject><subject>Systems Analysis</subject><subject>United Kingdom</subject><subject>Vaccination</subject><subject>Viral diseases</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl2L1TAQhoso7rr6D0QL3ih4jkmnSZMbYVn8OLAo6Hod0jSpOaTJMWlF_72pp7tsZW-khA7pM-_MO52ieIrRFkOD3-zDFL1024Nq7RYjxCjAveIUEwKbBgi7fys-KR6ltEcoh5w-LE4AKMWMsdOCXuk0Wt-_LscoVQ5K6bvSpuDkaIMvrS9VGA4yjoP2o3TlEDrt0uPigZEu6SfL-6z49v7d1cXHzeXnD7uL88uNygXGDVONlqjlmmLUSc4NbznTNRgEiCBKO151GJghSsq2RkQB54STuqJG1sQAnBXPj7oHF5JYLCdREQyU1RjhTOyORBfkXhyiHWT8LYK04u9FiL3IzVvltFCmyh1oqGk-mGMGQAg2ChlVdajVWevtUm1qB92p7DhKtxJdf_H2u-jDT9FwqDCZm3m5CMTwY8qTFYNNSjsnvQ5T7rvmrOYNQSSjL_5B73a3UL3MBqw3Yf5Ns6g4p4Q1uWjTZGp7B5WfTg9WBa-NzferhFerhMyM-tfYyyklsfv65T_YT2u2PrIqhpSiNjezw0jMW3ttUsxbK5atzWnPbs_9Jul6TeEPz-_mSg</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Sturniolo, Simone</creator><creator>Waites, William</creator><creator>Colbourn, Tim</creator><creator>Manheim, David</creator><creator>Panovska-Griffiths, Jasmina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4851-1144</orcidid><orcidid>https://orcid.org/0000-0002-7759-6805</orcidid><orcidid>https://orcid.org/0000-0001-8599-8380</orcidid><orcidid>https://orcid.org/0000-0002-6917-6552</orcidid><orcidid>https://orcid.org/0000-0002-7720-1121</orcidid></search><sort><creationdate>20210304</creationdate><title>Testing, tracing and isolation in compartmental models</title><author>Sturniolo, Simone ; Waites, William ; Colbourn, Tim ; Manheim, David ; Panovska-Griffiths, Jasmina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-8c7ea0b9e610da99f9b98e43f0305066d92d138f5caab405c399595426fa45f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Basic Reproduction Number - statistics & numerical data</topic><topic>Biology and Life Sciences</topic><topic>Compartmental analysis (Biology)</topic><topic>Computational Biology</topic><topic>Computer and Information Sciences</topic><topic>Computer Simulation</topic><topic>Contact</topic><topic>Contact tracing</topic><topic>Contact Tracing - methods</topic><topic>Contact Tracing - statistics & numerical data</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - diagnosis</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - transmission</topic><topic>COVID-19 Testing - methods</topic><topic>COVID-19 Testing - statistics & numerical data</topic><topic>Decision making</topic><topic>Disease transmission</topic><topic>Ebola virus</topic><topic>Epidemics</topic><topic>Epidemics - statistics & numerical data</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Infectious diseases</topic><topic>Influenza</topic><topic>Isolation (Hospital care)</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Model testing</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Ordinary differential equations</topic><topic>Pandemics</topic><topic>Physical Sciences</topic><topic>Plague</topic><topic>Population</topic><topic>Public health</topic><topic>Quarantine - methods</topic><topic>Quarantine - statistics & numerical data</topic><topic>Realism</topic><topic>Research and Analysis Methods</topic><topic>SARS-CoV-2</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Social distancing</topic><topic>Social Sciences</topic><topic>Software</topic><topic>Statistics</topic><topic>Systems Analysis</topic><topic>United Kingdom</topic><topic>Vaccination</topic><topic>Viral diseases</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sturniolo, Simone</creatorcontrib><creatorcontrib>Waites, William</creatorcontrib><creatorcontrib>Colbourn, Tim</creatorcontrib><creatorcontrib>Manheim, David</creatorcontrib><creatorcontrib>Panovska-Griffiths, Jasmina</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sturniolo, Simone</au><au>Waites, William</au><au>Colbourn, Tim</au><au>Manheim, David</au><au>Panovska-Griffiths, Jasmina</au><au>Regoes, Roland R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Testing, tracing and isolation in compartmental models</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>e1008633</spage><epage>e1008633</epage><pages>e1008633-e1008633</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Existing compartmental mathematical modelling methods for epidemics, such as SEIR models, cannot accurately represent effects of contact tracing. This makes them inappropriate for evaluating testing and contact tracing strategies to contain an outbreak. An alternative used in practice is the application of agent- or individual-based models (ABM). However ABMs are complex, less well-understood and much more computationally expensive. This paper presents a new method for accurately including the effects of Testing, contact-Tracing and Isolation (TTI) strategies in standard compartmental models. We derive our method using a careful probabilistic argument to show how contact tracing at the individual level is reflected in aggregate on the population level. We show that the resultant SEIR-TTI model accurately approximates the behaviour of a mechanistic agent-based model at far less computational cost. The computational efficiency is such that it can be easily and cheaply used for exploratory modelling to quantify the required levels of testing and tracing, alone and with other interventions, to assist adaptive planning for managing disease outbreaks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33661888</pmid><doi>10.1371/journal.pcbi.1008633</doi><orcidid>https://orcid.org/0000-0003-4851-1144</orcidid><orcidid>https://orcid.org/0000-0002-7759-6805</orcidid><orcidid>https://orcid.org/0000-0001-8599-8380</orcidid><orcidid>https://orcid.org/0000-0002-6917-6552</orcidid><orcidid>https://orcid.org/0000-0002-7720-1121</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-03, Vol.17 (3), p.e1008633-e1008633 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2513684101 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Basic Reproduction Number - statistics & numerical data Biology and Life Sciences Compartmental analysis (Biology) Computational Biology Computer and Information Sciences Computer Simulation Contact Contact tracing Contact Tracing - methods Contact Tracing - statistics & numerical data Control Coronaviruses COVID-19 COVID-19 - diagnosis COVID-19 - epidemiology COVID-19 - transmission COVID-19 Testing - methods COVID-19 Testing - statistics & numerical data Decision making Disease transmission Ebola virus Epidemics Epidemics - statistics & numerical data HIV Human immunodeficiency virus Humans Infectious diseases Influenza Isolation (Hospital care) Mathematical Concepts Mathematical models Medicine and Health Sciences Methods Model testing Models, Biological Models, Statistical Ordinary differential equations Pandemics Physical Sciences Plague Population Public health Quarantine - methods Quarantine - statistics & numerical data Realism Research and Analysis Methods SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Social distancing Social Sciences Software Statistics Systems Analysis United Kingdom Vaccination Viral diseases Viruses |
title | Testing, tracing and isolation in compartmental models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Testing,%20tracing%20and%20isolation%20in%20compartmental%20models&rft.jtitle=PLoS%20computational%20biology&rft.au=Sturniolo,%20Simone&rft.date=2021-03-04&rft.volume=17&rft.issue=3&rft.spage=e1008633&rft.epage=e1008633&rft.pages=e1008633-e1008633&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008633&rft_dat=%3Cgale_plos_%3EA658715177%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513684101&rft_id=info:pmid/33661888&rft_galeid=A658715177&rft_doaj_id=oai_doaj_org_article_cf29f9e346e34191833551fc0fc2d0be&rfr_iscdi=true |