Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge
Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effe...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-03, Vol.17 (3), p.e1008852-e1008852 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008852 |
---|---|
container_issue | 3 |
container_start_page | e1008852 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Erdős, Balázs van Sloun, Bart Adriaens, Michiel E O'Donovan, Shauna D Langin, Dominique Astrup, Arne Blaak, Ellen E Arts, Ilja C W van Riel, Natal A W |
description | Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively. |
doi_str_mv | 10.1371/journal.pcbi.1008852 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513683898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658711614</galeid><doaj_id>oai_doaj_org_article_85352599a5ff40cbafd7a1b72f6e5ee7</doaj_id><sourcerecordid>A658711614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXex4HTuXSlXFx0oVID7OlmOPs64SO7UdRPn1OGxadVEvyAePxs-843c0RfEcozUmDL-99FNwsl-PqrVrjBDntHpQHGNKyYoRyh_eiY-KJzFeIpTDpn5cHBHCOOcVPy6GLxCizzr2N-hS-WGckkx2zpSD19CXV5N0yRoLsdxBguA7cGDTdWldOfqYxiCdthkPEEfvYuaSL33Ima6flI9Qqp3se3AdPC0eGdlHeLbcJ8WP9---n39cXXz-sD0_u1ipusZpxZuKqQ1WxtSKblSzqWrSmEYjxpCpJKaIQkVapWiDJCea6VbWqm6x0khquSEnxcu97tj7KJZJRVFRTGpOeMMzsd0T2stLMQY7yHAtvLTib8KHTsiQrOpBcEpoRZtGUmM2SLXSaCZxyypTAwVgWet06Ta1A2gFLmX3B6KHL87uROd_Co4wZoRkgdeLQPBXE8QkBhsV9L104Kf539k5wbRCGX31D3q_u4XqZDZgnfG5r5pFxVlNOcO4xvOU1vdQ-WgYrPIOjM35g4I3BwWZSfArdXKKUWy_ff0P9tMhu9mzKvgYA5jb2WEk5mW_MSnmZRfLsueyF3fnflt0s93kD5xe_Y4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513683898</pqid></control><display><type>article</type><title>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Erdős, Balázs ; van Sloun, Bart ; Adriaens, Michiel E ; O'Donovan, Shauna D ; Langin, Dominique ; Astrup, Arne ; Blaak, Ellen E ; Arts, Ilja C W ; van Riel, Natal A W</creator><contributor>Gallo, James</contributor><creatorcontrib>Erdős, Balázs ; van Sloun, Bart ; Adriaens, Michiel E ; O'Donovan, Shauna D ; Langin, Dominique ; Astrup, Arne ; Blaak, Ellen E ; Arts, Ilja C W ; van Riel, Natal A W ; Gallo, James</creatorcontrib><description>Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008852</identifier><identifier>PMID: 33788828</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Biology and Life Sciences ; Blood Glucose - drug effects ; Blood Glucose - physiology ; Blood sugar ; Computer applications ; Customization ; Development and progression ; Diabetes ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - physiopathology ; Female ; Glucose ; Glucose - administration & dosage ; Glucose - metabolism ; Glucose - pharmacology ; Glucose tolerance ; Glucose Tolerance Test ; Health aspects ; Heterogeneity ; Homeostasis ; Humans ; Insulin ; Insulin resistance ; Insulin Resistance - physiology ; Intervention ; Male ; Medicine and Health Sciences ; Metabolism ; Metabolites ; Middle Aged ; Musculoskeletal system ; Parameter estimation ; Patient-Specific Modeling ; Physical Sciences ; Physiological aspects ; Physiology ; Plasma ; Population ; Postprandial Period - drug effects ; Postprandial Period - physiology ; Research and Analysis Methods ; Type 2 diabetes ; Values</subject><ispartof>PLoS computational biology, 2021-03, Vol.17 (3), p.e1008852-e1008852</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Erdős et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Erdős et al 2021 Erdős et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</citedby><cites>FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</cites><orcidid>0000-0001-8643-4915 ; 0000-0002-2827-9889 ; 0000-0001-9375-4730 ; 0000-0003-2253-4903 ; 0000-0002-2496-3464 ; 0000-0001-8968-8996 ; 0000-0001-6462-6692 ; 0000-0002-4472-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33788828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gallo, James</contributor><creatorcontrib>Erdős, Balázs</creatorcontrib><creatorcontrib>van Sloun, Bart</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>O'Donovan, Shauna D</creatorcontrib><creatorcontrib>Langin, Dominique</creatorcontrib><creatorcontrib>Astrup, Arne</creatorcontrib><creatorcontrib>Blaak, Ellen E</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><title>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.</description><subject>Adult</subject><subject>Biology and Life Sciences</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - physiology</subject><subject>Blood sugar</subject><subject>Computer applications</subject><subject>Customization</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Female</subject><subject>Glucose</subject><subject>Glucose - administration & dosage</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Glucose tolerance</subject><subject>Glucose Tolerance Test</subject><subject>Health aspects</subject><subject>Heterogeneity</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Intervention</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Middle Aged</subject><subject>Musculoskeletal system</subject><subject>Parameter estimation</subject><subject>Patient-Specific Modeling</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Population</subject><subject>Postprandial Period - drug effects</subject><subject>Postprandial Period - physiology</subject><subject>Research and Analysis Methods</subject><subject>Type 2 diabetes</subject><subject>Values</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXex4HTuXSlXFx0oVID7OlmOPs64SO7UdRPn1OGxadVEvyAePxs-843c0RfEcozUmDL-99FNwsl-PqrVrjBDntHpQHGNKyYoRyh_eiY-KJzFeIpTDpn5cHBHCOOcVPy6GLxCizzr2N-hS-WGckkx2zpSD19CXV5N0yRoLsdxBguA7cGDTdWldOfqYxiCdthkPEEfvYuaSL33Ima6flI9Qqp3se3AdPC0eGdlHeLbcJ8WP9---n39cXXz-sD0_u1ipusZpxZuKqQ1WxtSKblSzqWrSmEYjxpCpJKaIQkVapWiDJCea6VbWqm6x0khquSEnxcu97tj7KJZJRVFRTGpOeMMzsd0T2stLMQY7yHAtvLTib8KHTsiQrOpBcEpoRZtGUmM2SLXSaCZxyypTAwVgWet06Ta1A2gFLmX3B6KHL87uROd_Co4wZoRkgdeLQPBXE8QkBhsV9L104Kf539k5wbRCGX31D3q_u4XqZDZgnfG5r5pFxVlNOcO4xvOU1vdQ-WgYrPIOjM35g4I3BwWZSfArdXKKUWy_ff0P9tMhu9mzKvgYA5jb2WEk5mW_MSnmZRfLsueyF3fnflt0s93kD5xe_Y4</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Erdős, Balázs</creator><creator>van Sloun, Bart</creator><creator>Adriaens, Michiel E</creator><creator>O'Donovan, Shauna D</creator><creator>Langin, Dominique</creator><creator>Astrup, Arne</creator><creator>Blaak, Ellen E</creator><creator>Arts, Ilja C W</creator><creator>van Riel, Natal A W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8643-4915</orcidid><orcidid>https://orcid.org/0000-0002-2827-9889</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0003-2253-4903</orcidid><orcidid>https://orcid.org/0000-0002-2496-3464</orcidid><orcidid>https://orcid.org/0000-0001-8968-8996</orcidid><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid></search><sort><creationdate>20210331</creationdate><title>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</title><author>Erdős, Balázs ; van Sloun, Bart ; Adriaens, Michiel E ; O'Donovan, Shauna D ; Langin, Dominique ; Astrup, Arne ; Blaak, Ellen E ; Arts, Ilja C W ; van Riel, Natal A W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Biology and Life Sciences</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - physiology</topic><topic>Blood sugar</topic><topic>Computer applications</topic><topic>Customization</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Female</topic><topic>Glucose</topic><topic>Glucose - administration & dosage</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Glucose tolerance</topic><topic>Glucose Tolerance Test</topic><topic>Health aspects</topic><topic>Heterogeneity</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Intervention</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Middle Aged</topic><topic>Musculoskeletal system</topic><topic>Parameter estimation</topic><topic>Patient-Specific Modeling</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Population</topic><topic>Postprandial Period - drug effects</topic><topic>Postprandial Period - physiology</topic><topic>Research and Analysis Methods</topic><topic>Type 2 diabetes</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdős, Balázs</creatorcontrib><creatorcontrib>van Sloun, Bart</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>O'Donovan, Shauna D</creatorcontrib><creatorcontrib>Langin, Dominique</creatorcontrib><creatorcontrib>Astrup, Arne</creatorcontrib><creatorcontrib>Blaak, Ellen E</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdős, Balázs</au><au>van Sloun, Bart</au><au>Adriaens, Michiel E</au><au>O'Donovan, Shauna D</au><au>Langin, Dominique</au><au>Astrup, Arne</au><au>Blaak, Ellen E</au><au>Arts, Ilja C W</au><au>van Riel, Natal A W</au><au>Gallo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-03-31</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>e1008852</spage><epage>e1008852</epage><pages>e1008852-e1008852</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33788828</pmid><doi>10.1371/journal.pcbi.1008852</doi><orcidid>https://orcid.org/0000-0001-8643-4915</orcidid><orcidid>https://orcid.org/0000-0002-2827-9889</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0003-2253-4903</orcidid><orcidid>https://orcid.org/0000-0002-2496-3464</orcidid><orcidid>https://orcid.org/0000-0001-8968-8996</orcidid><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-03, Vol.17 (3), p.e1008852-e1008852 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2513683898 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Adult Biology and Life Sciences Blood Glucose - drug effects Blood Glucose - physiology Blood sugar Computer applications Customization Development and progression Diabetes Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - physiopathology Female Glucose Glucose - administration & dosage Glucose - metabolism Glucose - pharmacology Glucose tolerance Glucose Tolerance Test Health aspects Heterogeneity Homeostasis Humans Insulin Insulin resistance Insulin Resistance - physiology Intervention Male Medicine and Health Sciences Metabolism Metabolites Middle Aged Musculoskeletal system Parameter estimation Patient-Specific Modeling Physical Sciences Physiological aspects Physiology Plasma Population Postprandial Period - drug effects Postprandial Period - physiology Research and Analysis Methods Type 2 diabetes Values |
title | Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20computational%20model%20quantifies%20heterogeneity%20in%20postprandial%20responses%20to%20oral%20glucose%20challenge&rft.jtitle=PLoS%20computational%20biology&rft.au=Erd%C5%91s,%20Bal%C3%A1zs&rft.date=2021-03-31&rft.volume=17&rft.issue=3&rft.spage=e1008852&rft.epage=e1008852&rft.pages=e1008852-e1008852&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008852&rft_dat=%3Cgale_plos_%3EA658711614%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513683898&rft_id=info:pmid/33788828&rft_galeid=A658711614&rft_doaj_id=oai_doaj_org_article_85352599a5ff40cbafd7a1b72f6e5ee7&rfr_iscdi=true |