Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge

Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-03, Vol.17 (3), p.e1008852-e1008852
Hauptverfasser: Erdős, Balázs, van Sloun, Bart, Adriaens, Michiel E, O'Donovan, Shauna D, Langin, Dominique, Astrup, Arne, Blaak, Ellen E, Arts, Ilja C W, van Riel, Natal A W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008852
container_issue 3
container_start_page e1008852
container_title PLoS computational biology
container_volume 17
creator Erdős, Balázs
van Sloun, Bart
Adriaens, Michiel E
O'Donovan, Shauna D
Langin, Dominique
Astrup, Arne
Blaak, Ellen E
Arts, Ilja C W
van Riel, Natal A W
description Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.
doi_str_mv 10.1371/journal.pcbi.1008852
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513683898</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658711614</galeid><doaj_id>oai_doaj_org_article_85352599a5ff40cbafd7a1b72f6e5ee7</doaj_id><sourcerecordid>A658711614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXex4HTuXSlXFx0oVID7OlmOPs64SO7UdRPn1OGxadVEvyAePxs-843c0RfEcozUmDL-99FNwsl-PqrVrjBDntHpQHGNKyYoRyh_eiY-KJzFeIpTDpn5cHBHCOOcVPy6GLxCizzr2N-hS-WGckkx2zpSD19CXV5N0yRoLsdxBguA7cGDTdWldOfqYxiCdthkPEEfvYuaSL33Ima6flI9Qqp3se3AdPC0eGdlHeLbcJ8WP9---n39cXXz-sD0_u1ipusZpxZuKqQ1WxtSKblSzqWrSmEYjxpCpJKaIQkVapWiDJCea6VbWqm6x0khquSEnxcu97tj7KJZJRVFRTGpOeMMzsd0T2stLMQY7yHAtvLTib8KHTsiQrOpBcEpoRZtGUmM2SLXSaCZxyypTAwVgWet06Ta1A2gFLmX3B6KHL87uROd_Co4wZoRkgdeLQPBXE8QkBhsV9L104Kf539k5wbRCGX31D3q_u4XqZDZgnfG5r5pFxVlNOcO4xvOU1vdQ-WgYrPIOjM35g4I3BwWZSfArdXKKUWy_ff0P9tMhu9mzKvgYA5jb2WEk5mW_MSnmZRfLsueyF3fnflt0s93kD5xe_Y4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513683898</pqid></control><display><type>article</type><title>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Erdős, Balázs ; van Sloun, Bart ; Adriaens, Michiel E ; O'Donovan, Shauna D ; Langin, Dominique ; Astrup, Arne ; Blaak, Ellen E ; Arts, Ilja C W ; van Riel, Natal A W</creator><contributor>Gallo, James</contributor><creatorcontrib>Erdős, Balázs ; van Sloun, Bart ; Adriaens, Michiel E ; O'Donovan, Shauna D ; Langin, Dominique ; Astrup, Arne ; Blaak, Ellen E ; Arts, Ilja C W ; van Riel, Natal A W ; Gallo, James</creatorcontrib><description>Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008852</identifier><identifier>PMID: 33788828</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Biology and Life Sciences ; Blood Glucose - drug effects ; Blood Glucose - physiology ; Blood sugar ; Computer applications ; Customization ; Development and progression ; Diabetes ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - metabolism ; Diabetes Mellitus, Type 2 - physiopathology ; Female ; Glucose ; Glucose - administration &amp; dosage ; Glucose - metabolism ; Glucose - pharmacology ; Glucose tolerance ; Glucose Tolerance Test ; Health aspects ; Heterogeneity ; Homeostasis ; Humans ; Insulin ; Insulin resistance ; Insulin Resistance - physiology ; Intervention ; Male ; Medicine and Health Sciences ; Metabolism ; Metabolites ; Middle Aged ; Musculoskeletal system ; Parameter estimation ; Patient-Specific Modeling ; Physical Sciences ; Physiological aspects ; Physiology ; Plasma ; Population ; Postprandial Period - drug effects ; Postprandial Period - physiology ; Research and Analysis Methods ; Type 2 diabetes ; Values</subject><ispartof>PLoS computational biology, 2021-03, Vol.17 (3), p.e1008852-e1008852</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Erdős et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Erdős et al 2021 Erdős et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</citedby><cites>FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</cites><orcidid>0000-0001-8643-4915 ; 0000-0002-2827-9889 ; 0000-0001-9375-4730 ; 0000-0003-2253-4903 ; 0000-0002-2496-3464 ; 0000-0001-8968-8996 ; 0000-0001-6462-6692 ; 0000-0002-4472-7119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011733/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011733/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33788828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gallo, James</contributor><creatorcontrib>Erdős, Balázs</creatorcontrib><creatorcontrib>van Sloun, Bart</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>O'Donovan, Shauna D</creatorcontrib><creatorcontrib>Langin, Dominique</creatorcontrib><creatorcontrib>Astrup, Arne</creatorcontrib><creatorcontrib>Blaak, Ellen E</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><title>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.</description><subject>Adult</subject><subject>Biology and Life Sciences</subject><subject>Blood Glucose - drug effects</subject><subject>Blood Glucose - physiology</subject><subject>Blood sugar</subject><subject>Computer applications</subject><subject>Customization</subject><subject>Development and progression</subject><subject>Diabetes</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Female</subject><subject>Glucose</subject><subject>Glucose - administration &amp; dosage</subject><subject>Glucose - metabolism</subject><subject>Glucose - pharmacology</subject><subject>Glucose tolerance</subject><subject>Glucose Tolerance Test</subject><subject>Health aspects</subject><subject>Heterogeneity</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - physiology</subject><subject>Intervention</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Middle Aged</subject><subject>Musculoskeletal system</subject><subject>Parameter estimation</subject><subject>Patient-Specific Modeling</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Population</subject><subject>Postprandial Period - drug effects</subject><subject>Postprandial Period - physiology</subject><subject>Research and Analysis Methods</subject><subject>Type 2 diabetes</subject><subject>Values</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXex4HTuXSlXFx0oVID7OlmOPs64SO7UdRPn1OGxadVEvyAePxs-843c0RfEcozUmDL-99FNwsl-PqrVrjBDntHpQHGNKyYoRyh_eiY-KJzFeIpTDpn5cHBHCOOcVPy6GLxCizzr2N-hS-WGckkx2zpSD19CXV5N0yRoLsdxBguA7cGDTdWldOfqYxiCdthkPEEfvYuaSL33Ima6flI9Qqp3se3AdPC0eGdlHeLbcJ8WP9---n39cXXz-sD0_u1ipusZpxZuKqQ1WxtSKblSzqWrSmEYjxpCpJKaIQkVapWiDJCea6VbWqm6x0khquSEnxcu97tj7KJZJRVFRTGpOeMMzsd0T2stLMQY7yHAtvLTib8KHTsiQrOpBcEpoRZtGUmM2SLXSaCZxyypTAwVgWet06Ta1A2gFLmX3B6KHL87uROd_Co4wZoRkgdeLQPBXE8QkBhsV9L104Kf539k5wbRCGX31D3q_u4XqZDZgnfG5r5pFxVlNOcO4xvOU1vdQ-WgYrPIOjM35g4I3BwWZSfArdXKKUWy_ff0P9tMhu9mzKvgYA5jb2WEk5mW_MSnmZRfLsueyF3fnflt0s93kD5xe_Y4</recordid><startdate>20210331</startdate><enddate>20210331</enddate><creator>Erdős, Balázs</creator><creator>van Sloun, Bart</creator><creator>Adriaens, Michiel E</creator><creator>O'Donovan, Shauna D</creator><creator>Langin, Dominique</creator><creator>Astrup, Arne</creator><creator>Blaak, Ellen E</creator><creator>Arts, Ilja C W</creator><creator>van Riel, Natal A W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8643-4915</orcidid><orcidid>https://orcid.org/0000-0002-2827-9889</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0003-2253-4903</orcidid><orcidid>https://orcid.org/0000-0002-2496-3464</orcidid><orcidid>https://orcid.org/0000-0001-8968-8996</orcidid><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid></search><sort><creationdate>20210331</creationdate><title>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</title><author>Erdős, Balázs ; van Sloun, Bart ; Adriaens, Michiel E ; O'Donovan, Shauna D ; Langin, Dominique ; Astrup, Arne ; Blaak, Ellen E ; Arts, Ilja C W ; van Riel, Natal A W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c661t-8927c41cff6c54c942639f9d0770f2a1505e23bcc590a83d7dba6c6b1cd0ada43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>Biology and Life Sciences</topic><topic>Blood Glucose - drug effects</topic><topic>Blood Glucose - physiology</topic><topic>Blood sugar</topic><topic>Computer applications</topic><topic>Customization</topic><topic>Development and progression</topic><topic>Diabetes</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Female</topic><topic>Glucose</topic><topic>Glucose - administration &amp; dosage</topic><topic>Glucose - metabolism</topic><topic>Glucose - pharmacology</topic><topic>Glucose tolerance</topic><topic>Glucose Tolerance Test</topic><topic>Health aspects</topic><topic>Heterogeneity</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - physiology</topic><topic>Intervention</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Middle Aged</topic><topic>Musculoskeletal system</topic><topic>Parameter estimation</topic><topic>Patient-Specific Modeling</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Population</topic><topic>Postprandial Period - drug effects</topic><topic>Postprandial Period - physiology</topic><topic>Research and Analysis Methods</topic><topic>Type 2 diabetes</topic><topic>Values</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdős, Balázs</creatorcontrib><creatorcontrib>van Sloun, Bart</creatorcontrib><creatorcontrib>Adriaens, Michiel E</creatorcontrib><creatorcontrib>O'Donovan, Shauna D</creatorcontrib><creatorcontrib>Langin, Dominique</creatorcontrib><creatorcontrib>Astrup, Arne</creatorcontrib><creatorcontrib>Blaak, Ellen E</creatorcontrib><creatorcontrib>Arts, Ilja C W</creatorcontrib><creatorcontrib>van Riel, Natal A W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdős, Balázs</au><au>van Sloun, Bart</au><au>Adriaens, Michiel E</au><au>O'Donovan, Shauna D</au><au>Langin, Dominique</au><au>Astrup, Arne</au><au>Blaak, Ellen E</au><au>Arts, Ilja C W</au><au>van Riel, Natal A W</au><au>Gallo, James</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-03-31</date><risdate>2021</risdate><volume>17</volume><issue>3</issue><spage>e1008852</spage><epage>e1008852</epage><pages>e1008852-e1008852</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Plasma glucose and insulin responses following an oral glucose challenge are representative of glucose tolerance and insulin resistance, key indicators of type 2 diabetes mellitus pathophysiology. A large heterogeneity in individuals' challenge test responses has been shown to underlie the effectiveness of lifestyle intervention. Currently, this heterogeneity is overlooked due to a lack of methods to quantify the interconnected dynamics in the glucose and insulin time-courses. Here, a physiology-based mathematical model of the human glucose-insulin system is personalized to elucidate the heterogeneity in individuals' responses using a large population of overweight/obese individuals (n = 738) from the DIOGenes study. The personalized models are derived from population level models through a systematic parameter selection pipeline that may be generalized to other biological systems. The resulting personalized models showed a 4-5 fold decrease in discrepancy between measurements and model simulation compared to population level. The estimated model parameters capture relevant features of individuals' metabolic health such as gastric emptying, endogenous insulin secretion and insulin dependent glucose disposal into tissues, with the latter also showing a significant association with the Insulinogenic index and the Matsuda insulin sensitivity index, respectively.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33788828</pmid><doi>10.1371/journal.pcbi.1008852</doi><orcidid>https://orcid.org/0000-0001-8643-4915</orcidid><orcidid>https://orcid.org/0000-0002-2827-9889</orcidid><orcidid>https://orcid.org/0000-0001-9375-4730</orcidid><orcidid>https://orcid.org/0000-0003-2253-4903</orcidid><orcidid>https://orcid.org/0000-0002-2496-3464</orcidid><orcidid>https://orcid.org/0000-0001-8968-8996</orcidid><orcidid>https://orcid.org/0000-0001-6462-6692</orcidid><orcidid>https://orcid.org/0000-0002-4472-7119</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-03, Vol.17 (3), p.e1008852-e1008852
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2513683898
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central
subjects Adult
Biology and Life Sciences
Blood Glucose - drug effects
Blood Glucose - physiology
Blood sugar
Computer applications
Customization
Development and progression
Diabetes
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - physiopathology
Female
Glucose
Glucose - administration & dosage
Glucose - metabolism
Glucose - pharmacology
Glucose tolerance
Glucose Tolerance Test
Health aspects
Heterogeneity
Homeostasis
Humans
Insulin
Insulin resistance
Insulin Resistance - physiology
Intervention
Male
Medicine and Health Sciences
Metabolism
Metabolites
Middle Aged
Musculoskeletal system
Parameter estimation
Patient-Specific Modeling
Physical Sciences
Physiological aspects
Physiology
Plasma
Population
Postprandial Period - drug effects
Postprandial Period - physiology
Research and Analysis Methods
Type 2 diabetes
Values
title Personalized computational model quantifies heterogeneity in postprandial responses to oral glucose challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personalized%20computational%20model%20quantifies%20heterogeneity%20in%20postprandial%20responses%20to%20oral%20glucose%20challenge&rft.jtitle=PLoS%20computational%20biology&rft.au=Erd%C5%91s,%20Bal%C3%A1zs&rft.date=2021-03-31&rft.volume=17&rft.issue=3&rft.spage=e1008852&rft.epage=e1008852&rft.pages=e1008852-e1008852&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008852&rft_dat=%3Cgale_plos_%3EA658711614%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513683898&rft_id=info:pmid/33788828&rft_galeid=A658711614&rft_doaj_id=oai_doaj_org_article_85352599a5ff40cbafd7a1b72f6e5ee7&rfr_iscdi=true