Automatic image annotation for fluorescent cell nuclei segmentation
Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of an...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-04, Vol.16 (4), p.e0250093-e0250093 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0250093 |
---|---|
container_issue | 4 |
container_start_page | e0250093 |
container_title | PloS one |
container_volume | 16 |
creator | Englbrecht, Fabian Ruider, Iris E Bausch, Andreas R |
description | Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of annotated image data has been steadily reduced due to methods such as data augmentation, the process of manual or semi-automated data annotation is the most labor and cost intensive task in the process of cell nuclei segmentation with deep neural networks. In this work we propose a system to fully automate the annotation process of a custom fluorescent cell nuclei image dataset. By that we are able to reduce nuclei labelling time by up to 99.5%. The output of our system provides high quality training data for machine learning applications to identify the position of cell nuclei in microscopy images. Our experiments have shown that the automatically annotated dataset provides coequal segmentation performance compared to manual data annotation. In addition, we show that our system enables a single workflow from raw data input to desired nuclei segmentation and tracking results without relying on pre-trained models or third-party training datasets for neural networks. |
doi_str_mv | 10.1371/journal.pone.0250093 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2513668229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A658729122</galeid><doaj_id>oai_doaj_org_article_6083673826264960a2d5645b9eb28322</doaj_id><sourcerecordid>A658729122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b9855c0b5f329d2fe562d0e62429e054c6db33a33269b6c45fd3fd47c6121e3c3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjMlJk2luhGHwY2Bhwa_bkKannQ5pMyat6L83nekuU9kL6UWa0-e8yXv6JslzSpaUrei7vRt8p-3y4DpcEuCESPYguaSSwUIAYQ_P3i-SJyHsCeEsF-JxcsHiSlc5v0w266F3re4bkzatrjHVXef6uHddWjmfVnZwHoPBrk8NWpt2g7HYpAHrNtaO4NPkUaVtwGfTepV8__jh2-bz4vrm03azvl4YIaFfFDLn3JCCVwxkCRVyASVBARlIJDwzoiwY04yBkIUwGa9KVpXZyggKFJlhV8nLk-7BuqAm_0EBp0yIHEBGYnsiSqf36uCjJf9HOd2oY8H5WmkfvVpUguRMrFgOAkQmBdFQcpHxQmIBOQOIWu-n04aixXKcgNd2Jjr_0jU7VbtfKiec5pRGgTeTgHc_Bwy9apswzlB36IbjvTMuV0KM6Kt_0PvdTVSto4Gmq1w814yiai14vgJJj_de3kPFp8S2MTEsVRPrs4a3s4bI9Pi7r_UQgtp-_fL_7M2POfv6jN2htv0uODuMkQlzMDuBxrsQPFZ3Q6ZEjVm_nYYas66mrMe2F-c_6K7pNtzsL6lX918</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2513668229</pqid></control><display><type>article</type><title>Automatic image annotation for fluorescent cell nuclei segmentation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Englbrecht, Fabian ; Ruider, Iris E ; Bausch, Andreas R</creator><contributor>Raja, Gulistan</contributor><creatorcontrib>Englbrecht, Fabian ; Ruider, Iris E ; Bausch, Andreas R ; Raja, Gulistan</creatorcontrib><description>Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of annotated image data has been steadily reduced due to methods such as data augmentation, the process of manual or semi-automated data annotation is the most labor and cost intensive task in the process of cell nuclei segmentation with deep neural networks. In this work we propose a system to fully automate the annotation process of a custom fluorescent cell nuclei image dataset. By that we are able to reduce nuclei labelling time by up to 99.5%. The output of our system provides high quality training data for machine learning applications to identify the position of cell nuclei in microscopy images. Our experiments have shown that the automatically annotated dataset provides coequal segmentation performance compared to manual data annotation. In addition, we show that our system enables a single workflow from raw data input to desired nuclei segmentation and tracking results without relying on pre-trained models or third-party training datasets for neural networks.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0250093</identifier><identifier>PMID: 33861785</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Algorithms ; Annotations ; Automation ; Biological Phenomena ; Biology and Life Sciences ; Cell division ; Cell nuclei ; Cell Nucleus - classification ; Cell Nucleus - metabolism ; Cell research ; Coloring Agents ; Computer and Information Sciences ; Data Accuracy ; Data Curation - methods ; Datasets ; Deep Learning ; Drafting software ; Electronic Data Processing - methods ; Engineering and Technology ; Epithelial cells ; Epithelium ; Fluorescence ; Fluorescence microscopy ; Fluorescent Dyes ; Humans ; Image annotation ; Image filters ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Machine Learning ; Mammary gland ; Mammary glands ; Masks ; Methods ; Microscopy ; Neural networks ; Neural Networks, Computer ; Nuclei ; Nuclei (cytology) ; Observations ; Reproducibility of Results ; Research and Analysis Methods ; Visualization ; Watersheds</subject><ispartof>PloS one, 2021-04, Vol.16 (4), p.e0250093-e0250093</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Englbrecht et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Englbrecht et al 2021 Englbrecht et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b9855c0b5f329d2fe562d0e62429e054c6db33a33269b6c45fd3fd47c6121e3c3</citedby><cites>FETCH-LOGICAL-c692t-b9855c0b5f329d2fe562d0e62429e054c6db33a33269b6c45fd3fd47c6121e3c3</cites><orcidid>0000-0001-7743-4593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051811/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8051811/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33861785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Raja, Gulistan</contributor><creatorcontrib>Englbrecht, Fabian</creatorcontrib><creatorcontrib>Ruider, Iris E</creatorcontrib><creatorcontrib>Bausch, Andreas R</creatorcontrib><title>Automatic image annotation for fluorescent cell nuclei segmentation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of annotated image data has been steadily reduced due to methods such as data augmentation, the process of manual or semi-automated data annotation is the most labor and cost intensive task in the process of cell nuclei segmentation with deep neural networks. In this work we propose a system to fully automate the annotation process of a custom fluorescent cell nuclei image dataset. By that we are able to reduce nuclei labelling time by up to 99.5%. The output of our system provides high quality training data for machine learning applications to identify the position of cell nuclei in microscopy images. Our experiments have shown that the automatically annotated dataset provides coequal segmentation performance compared to manual data annotation. In addition, we show that our system enables a single workflow from raw data input to desired nuclei segmentation and tracking results without relying on pre-trained models or third-party training datasets for neural networks.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Annotations</subject><subject>Automation</subject><subject>Biological Phenomena</subject><subject>Biology and Life Sciences</subject><subject>Cell division</subject><subject>Cell nuclei</subject><subject>Cell Nucleus - classification</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell research</subject><subject>Coloring Agents</subject><subject>Computer and Information Sciences</subject><subject>Data Accuracy</subject><subject>Data Curation - methods</subject><subject>Datasets</subject><subject>Deep Learning</subject><subject>Drafting software</subject><subject>Electronic Data Processing - methods</subject><subject>Engineering and Technology</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Fluorescent Dyes</subject><subject>Humans</subject><subject>Image annotation</subject><subject>Image filters</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Machine Learning</subject><subject>Mammary gland</subject><subject>Mammary glands</subject><subject>Masks</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Nuclei</subject><subject>Nuclei (cytology)</subject><subject>Observations</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Visualization</subject><subject>Watersheds</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7rr6D0QLgujFjMlJk2luhGHwY2Bhwa_bkKannQ5pMyat6L83nekuU9kL6UWa0-e8yXv6JslzSpaUrei7vRt8p-3y4DpcEuCESPYguaSSwUIAYQ_P3i-SJyHsCeEsF-JxcsHiSlc5v0w266F3re4bkzatrjHVXef6uHddWjmfVnZwHoPBrk8NWpt2g7HYpAHrNtaO4NPkUaVtwGfTepV8__jh2-bz4vrm03azvl4YIaFfFDLn3JCCVwxkCRVyASVBARlIJDwzoiwY04yBkIUwGa9KVpXZyggKFJlhV8nLk-7BuqAm_0EBp0yIHEBGYnsiSqf36uCjJf9HOd2oY8H5WmkfvVpUguRMrFgOAkQmBdFQcpHxQmIBOQOIWu-n04aixXKcgNd2Jjr_0jU7VbtfKiec5pRGgTeTgHc_Bwy9apswzlB36IbjvTMuV0KM6Kt_0PvdTVSto4Gmq1w814yiai14vgJJj_de3kPFp8S2MTEsVRPrs4a3s4bI9Pi7r_UQgtp-_fL_7M2POfv6jN2htv0uODuMkQlzMDuBxrsQPFZ3Q6ZEjVm_nYYas66mrMe2F-c_6K7pNtzsL6lX918</recordid><startdate>20210416</startdate><enddate>20210416</enddate><creator>Englbrecht, Fabian</creator><creator>Ruider, Iris E</creator><creator>Bausch, Andreas R</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7743-4593</orcidid></search><sort><creationdate>20210416</creationdate><title>Automatic image annotation for fluorescent cell nuclei segmentation</title><author>Englbrecht, Fabian ; Ruider, Iris E ; Bausch, Andreas R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b9855c0b5f329d2fe562d0e62429e054c6db33a33269b6c45fd3fd47c6121e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Annotations</topic><topic>Automation</topic><topic>Biological Phenomena</topic><topic>Biology and Life Sciences</topic><topic>Cell division</topic><topic>Cell nuclei</topic><topic>Cell Nucleus - classification</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell research</topic><topic>Coloring Agents</topic><topic>Computer and Information Sciences</topic><topic>Data Accuracy</topic><topic>Data Curation - methods</topic><topic>Datasets</topic><topic>Deep Learning</topic><topic>Drafting software</topic><topic>Electronic Data Processing - methods</topic><topic>Engineering and Technology</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Fluorescent Dyes</topic><topic>Humans</topic><topic>Image annotation</topic><topic>Image filters</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Machine Learning</topic><topic>Mammary gland</topic><topic>Mammary glands</topic><topic>Masks</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Nuclei</topic><topic>Nuclei (cytology)</topic><topic>Observations</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Visualization</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Englbrecht, Fabian</creatorcontrib><creatorcontrib>Ruider, Iris E</creatorcontrib><creatorcontrib>Bausch, Andreas R</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Englbrecht, Fabian</au><au>Ruider, Iris E</au><au>Bausch, Andreas R</au><au>Raja, Gulistan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic image annotation for fluorescent cell nuclei segmentation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-04-16</date><risdate>2021</risdate><volume>16</volume><issue>4</issue><spage>e0250093</spage><epage>e0250093</epage><pages>e0250093-e0250093</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Dataset annotation is a time and labor-intensive task and an integral requirement for training and testing deep learning models. The segmentation of images in life science microscopy requires annotated image datasets for object detection tasks such as instance segmentation. Although the amount of annotated image data has been steadily reduced due to methods such as data augmentation, the process of manual or semi-automated data annotation is the most labor and cost intensive task in the process of cell nuclei segmentation with deep neural networks. In this work we propose a system to fully automate the annotation process of a custom fluorescent cell nuclei image dataset. By that we are able to reduce nuclei labelling time by up to 99.5%. The output of our system provides high quality training data for machine learning applications to identify the position of cell nuclei in microscopy images. Our experiments have shown that the automatically annotated dataset provides coequal segmentation performance compared to manual data annotation. In addition, we show that our system enables a single workflow from raw data input to desired nuclei segmentation and tracking results without relying on pre-trained models or third-party training datasets for neural networks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33861785</pmid><doi>10.1371/journal.pone.0250093</doi><orcidid>https://orcid.org/0000-0001-7743-4593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-04, Vol.16 (4), p.e0250093-e0250093 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2513668229 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Accuracy Algorithms Annotations Automation Biological Phenomena Biology and Life Sciences Cell division Cell nuclei Cell Nucleus - classification Cell Nucleus - metabolism Cell research Coloring Agents Computer and Information Sciences Data Accuracy Data Curation - methods Datasets Deep Learning Drafting software Electronic Data Processing - methods Engineering and Technology Epithelial cells Epithelium Fluorescence Fluorescence microscopy Fluorescent Dyes Humans Image annotation Image filters Image processing Image Processing, Computer-Assisted - methods Image segmentation Machine Learning Mammary gland Mammary glands Masks Methods Microscopy Neural networks Neural Networks, Computer Nuclei Nuclei (cytology) Observations Reproducibility of Results Research and Analysis Methods Visualization Watersheds |
title | Automatic image annotation for fluorescent cell nuclei segmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20image%20annotation%20for%20fluorescent%20cell%20nuclei%20segmentation&rft.jtitle=PloS%20one&rft.au=Englbrecht,%20Fabian&rft.date=2021-04-16&rft.volume=16&rft.issue=4&rft.spage=e0250093&rft.epage=e0250093&rft.pages=e0250093-e0250093&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0250093&rft_dat=%3Cgale_plos_%3EA658729122%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2513668229&rft_id=info:pmid/33861785&rft_galeid=A658729122&rft_doaj_id=oai_doaj_org_article_6083673826264960a2d5645b9eb28322&rfr_iscdi=true |