Relay protection system of transmission line based on AI
With the development of modern power systems, higher requirements are imposed on relay protection technology. Traditional relay protection and fault diagnosis technologies have been unable to meet the requirements of the continuous development of power systems, and relay protection systems based on...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-04, Vol.16 (4), p.e0246403-e0246403 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0246403 |
---|---|
container_issue | 4 |
container_start_page | e0246403 |
container_title | PloS one |
container_volume | 16 |
creator | Zheng, Xiangyu Jia, Rong Gong, Linling Aisikaer Ma, Xiping Dang, Jian |
description | With the development of modern power systems, higher requirements are imposed on relay protection technology. Traditional relay protection and fault diagnosis technologies have been unable to meet the requirements of the continuous development of power systems, and relay protection systems based on artificial intelligence(AI) technology have received increasing attention. Therefore, this document first analyses the weaknesses of traditional broadcast line protection and uses the adaptability and self-learning of artificial intelligence(AI); to propose the concept of protection of a relay line based on AI. In combination with the artificial nervous network, the AI-based relay protection system shall be studied and the experimental model shall be developed. This paper validates it with simulation experiments. The research results show that for the analysis of the ANN test results of the subnetwork, the actual output of the subnetwork is very close to the ideal output, and the error does not exceed 0.2%. The system has good performance and high reliability. |
doi_str_mv | 10.1371/journal.pone.0246403 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2509587623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A657706358</galeid><doaj_id>oai_doaj_org_article_a6fe741769ca45cd8fab406f65cfd215</doaj_id><sourcerecordid>A657706358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-d5b4ee7ef85d3dc908848003292c0fd742b87df260844a681ed8ba22e666186e3</originalsourceid><addsrcrecordid>eNptkl2LEzEUhgdR3HX1H4gOCOJNa74nc7NQFj8KC4LodcgkJ-2UNKnJjNB_b8bOLq14leTkyXvOe3Kq6jVGS0wb_HEXxxS0Xx5igCUiTDBEn1TXuKVkIQiiT8_2V9WLnHcIcSqFeF5dUSqJEJhfV_I7eH2sDykOYIY-hjof8wD7Orp6SDrkfZ_zFPZ9gLrTGWxdTqv1y-qZ0z7Dq3m9qX5-_vTj7uvi_tuX9d3qfmG45MPC8o4BNOAkt9SaFknJJEKUtMQgZxtGOtlYRwSSjGkhMVjZaUJAlPqkAHpTvT3pHnzMajadFeGo5bIRhBZifSJs1Dt1SP1ep6OKuld_AzFtlE5DbzwoLRw0DDeiNZpxY6XTHUPCCW6cJZgXrds529jtwRoIpQn-QvTyJvRbtYm_lUSThUngwyyQ4q8R8qBKAw14rwPEcaobF5I3hBX03T_o_93N1EYXA31wseQ1k6haFZ0GCcplod6fUVvQftjm6MfpR_MlyE6gSTHnBO7RG0ZqmquHItQ0V2qeq_LszXlfHh89DBL9A6JyyK4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2509587623</pqid></control><display><type>article</type><title>Relay protection system of transmission line based on AI</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zheng, Xiangyu ; Jia, Rong ; Gong, Linling ; Aisikaer ; Ma, Xiping ; Dang, Jian</creator><creatorcontrib>Zheng, Xiangyu ; Jia, Rong ; Gong, Linling ; Aisikaer ; Ma, Xiping ; Dang, Jian</creatorcontrib><description>With the development of modern power systems, higher requirements are imposed on relay protection technology. Traditional relay protection and fault diagnosis technologies have been unable to meet the requirements of the continuous development of power systems, and relay protection systems based on artificial intelligence(AI) technology have received increasing attention. Therefore, this document first analyses the weaknesses of traditional broadcast line protection and uses the adaptability and self-learning of artificial intelligence(AI); to propose the concept of protection of a relay line based on AI. In combination with the artificial nervous network, the AI-based relay protection system shall be studied and the experimental model shall be developed. This paper validates it with simulation experiments. The research results show that for the analysis of the ANN test results of the subnetwork, the actual output of the subnetwork is very close to the ideal output, and the error does not exceed 0.2%. The system has good performance and high reliability.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0246403</identifier><identifier>PMID: 33826615</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial intelligence ; Biology and Life Sciences ; Computer and Information Sciences ; Electric equipment ; Electric power ; Electric power grids ; Electric power systems ; Electric relays ; Electrical engineering ; Electrical equipment ; Electricity distribution ; Engineering and Technology ; Intelligence ; Nervous system ; Physical Sciences ; Protective relays ; Relay ; Research and Analysis Methods ; Technology ; Technology application ; Transmission lines</subject><ispartof>PloS one, 2021-04, Vol.16 (4), p.e0246403-e0246403</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Zheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Zheng et al 2021 Zheng et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-d5b4ee7ef85d3dc908848003292c0fd742b87df260844a681ed8ba22e666186e3</citedby><cites>FETCH-LOGICAL-c585t-d5b4ee7ef85d3dc908848003292c0fd742b87df260844a681ed8ba22e666186e3</cites><orcidid>0000-0002-7663-9201</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026085/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8026085/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33826615$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zheng, Xiangyu</creatorcontrib><creatorcontrib>Jia, Rong</creatorcontrib><creatorcontrib>Gong, Linling</creatorcontrib><creatorcontrib>Aisikaer</creatorcontrib><creatorcontrib>Ma, Xiping</creatorcontrib><creatorcontrib>Dang, Jian</creatorcontrib><title>Relay protection system of transmission line based on AI</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the development of modern power systems, higher requirements are imposed on relay protection technology. Traditional relay protection and fault diagnosis technologies have been unable to meet the requirements of the continuous development of power systems, and relay protection systems based on artificial intelligence(AI) technology have received increasing attention. Therefore, this document first analyses the weaknesses of traditional broadcast line protection and uses the adaptability and self-learning of artificial intelligence(AI); to propose the concept of protection of a relay line based on AI. In combination with the artificial nervous network, the AI-based relay protection system shall be studied and the experimental model shall be developed. This paper validates it with simulation experiments. The research results show that for the analysis of the ANN test results of the subnetwork, the actual output of the subnetwork is very close to the ideal output, and the error does not exceed 0.2%. The system has good performance and high reliability.</description><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Electric equipment</subject><subject>Electric power</subject><subject>Electric power grids</subject><subject>Electric power systems</subject><subject>Electric relays</subject><subject>Electrical engineering</subject><subject>Electrical equipment</subject><subject>Electricity distribution</subject><subject>Engineering and Technology</subject><subject>Intelligence</subject><subject>Nervous system</subject><subject>Physical Sciences</subject><subject>Protective relays</subject><subject>Relay</subject><subject>Research and Analysis Methods</subject><subject>Technology</subject><subject>Technology application</subject><subject>Transmission lines</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkl2LEzEUhgdR3HX1H4gOCOJNa74nc7NQFj8KC4LodcgkJ-2UNKnJjNB_b8bOLq14leTkyXvOe3Kq6jVGS0wb_HEXxxS0Xx5igCUiTDBEn1TXuKVkIQiiT8_2V9WLnHcIcSqFeF5dUSqJEJhfV_I7eH2sDykOYIY-hjof8wD7Orp6SDrkfZ_zFPZ9gLrTGWxdTqv1y-qZ0z7Dq3m9qX5-_vTj7uvi_tuX9d3qfmG45MPC8o4BNOAkt9SaFknJJEKUtMQgZxtGOtlYRwSSjGkhMVjZaUJAlPqkAHpTvT3pHnzMajadFeGo5bIRhBZifSJs1Dt1SP1ep6OKuld_AzFtlE5DbzwoLRw0DDeiNZpxY6XTHUPCCW6cJZgXrds529jtwRoIpQn-QvTyJvRbtYm_lUSThUngwyyQ4q8R8qBKAw14rwPEcaobF5I3hBX03T_o_93N1EYXA31wseQ1k6haFZ0GCcplod6fUVvQftjm6MfpR_MlyE6gSTHnBO7RG0ZqmquHItQ0V2qeq_LszXlfHh89DBL9A6JyyK4</recordid><startdate>20210407</startdate><enddate>20210407</enddate><creator>Zheng, Xiangyu</creator><creator>Jia, Rong</creator><creator>Gong, Linling</creator><creator>Aisikaer</creator><creator>Ma, Xiping</creator><creator>Dang, Jian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7663-9201</orcidid></search><sort><creationdate>20210407</creationdate><title>Relay protection system of transmission line based on AI</title><author>Zheng, Xiangyu ; Jia, Rong ; Gong, Linling ; Aisikaer ; Ma, Xiping ; Dang, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-d5b4ee7ef85d3dc908848003292c0fd742b87df260844a681ed8ba22e666186e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Electric equipment</topic><topic>Electric power</topic><topic>Electric power grids</topic><topic>Electric power systems</topic><topic>Electric relays</topic><topic>Electrical engineering</topic><topic>Electrical equipment</topic><topic>Electricity distribution</topic><topic>Engineering and Technology</topic><topic>Intelligence</topic><topic>Nervous system</topic><topic>Physical Sciences</topic><topic>Protective relays</topic><topic>Relay</topic><topic>Research and Analysis Methods</topic><topic>Technology</topic><topic>Technology application</topic><topic>Transmission lines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Xiangyu</creatorcontrib><creatorcontrib>Jia, Rong</creatorcontrib><creatorcontrib>Gong, Linling</creatorcontrib><creatorcontrib>Aisikaer</creatorcontrib><creatorcontrib>Ma, Xiping</creatorcontrib><creatorcontrib>Dang, Jian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Xiangyu</au><au>Jia, Rong</au><au>Gong, Linling</au><au>Aisikaer</au><au>Ma, Xiping</au><au>Dang, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relay protection system of transmission line based on AI</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-04-07</date><risdate>2021</risdate><volume>16</volume><issue>4</issue><spage>e0246403</spage><epage>e0246403</epage><pages>e0246403-e0246403</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the development of modern power systems, higher requirements are imposed on relay protection technology. Traditional relay protection and fault diagnosis technologies have been unable to meet the requirements of the continuous development of power systems, and relay protection systems based on artificial intelligence(AI) technology have received increasing attention. Therefore, this document first analyses the weaknesses of traditional broadcast line protection and uses the adaptability and self-learning of artificial intelligence(AI); to propose the concept of protection of a relay line based on AI. In combination with the artificial nervous network, the AI-based relay protection system shall be studied and the experimental model shall be developed. This paper validates it with simulation experiments. The research results show that for the analysis of the ANN test results of the subnetwork, the actual output of the subnetwork is very close to the ideal output, and the error does not exceed 0.2%. The system has good performance and high reliability.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33826615</pmid><doi>10.1371/journal.pone.0246403</doi><orcidid>https://orcid.org/0000-0002-7663-9201</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-04, Vol.16 (4), p.e0246403-e0246403 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2509587623 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Artificial intelligence Biology and Life Sciences Computer and Information Sciences Electric equipment Electric power Electric power grids Electric power systems Electric relays Electrical engineering Electrical equipment Electricity distribution Engineering and Technology Intelligence Nervous system Physical Sciences Protective relays Relay Research and Analysis Methods Technology Technology application Transmission lines |
title | Relay protection system of transmission line based on AI |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A50%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relay%20protection%20system%20of%20transmission%20line%20based%20on%20AI&rft.jtitle=PloS%20one&rft.au=Zheng,%20Xiangyu&rft.date=2021-04-07&rft.volume=16&rft.issue=4&rft.spage=e0246403&rft.epage=e0246403&rft.pages=e0246403-e0246403&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0246403&rft_dat=%3Cgale_plos_%3EA657706358%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2509587623&rft_id=info:pmid/33826615&rft_galeid=A657706358&rft_doaj_id=oai_doaj_org_article_a6fe741769ca45cd8fab406f65cfd215&rfr_iscdi=true |