Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach

This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0248846-e0248846
Hauptverfasser: Han, Win Min, Mahikul, Wiriya, Pouplin, Thomas, Lawpoolsri, Saranath, White, Lisa J, Pan-Ngum, Wirichada
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0248846
container_issue 3
container_start_page e0248846
container_title PloS one
container_volume 16
creator Han, Win Min
Mahikul, Wiriya
Pouplin, Thomas
Lawpoolsri, Saranath
White, Lisa J
Pan-Ngum, Wirichada
description This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the transmission of TB and the MDR-TB situation in the Southeast Asia region. The population-level impacts of short-course treatment regimens were compared with the impacts of conventional regimens. Multi-way analysis was used to evaluate the impact by varying programmatic factors (eligibility for short-course MDR-TB treatment, treatment initiation, and drug susceptibility test (DST) coverage). The model predicted that overall TB incidence will be reduced from 246 (95% credible intervals (CrI), 221-275) per 100,000 population in 2020 to 239 (95% CrI, 215-267) per 100,000 population in 2035, with a modest reduction of 2.8% (95% CrI, 2.7%-2.9%). Despite the slight reduction in overall TB infections, the model predicted that the MDR-TB percentage among newly notified TB infections will remain steady, with 2.4% (95% CrI, 2.1-2.9) in 2020 and 2.5% (95% CrI, 2.3-3.1) in 2035, using conventional MDR-TB treatment. With the introduction of short-course regimens to treat MDR-TB, the development of resistance can be slowed by 38.6% (95% confidence intervals (CI), 35.9-41.3) reduction in MDR-TB case number, and 37.6% (95% CI, 34.9-40.3) reduction in MDR-TB percentage among new TB infections over the 30-year period compared with the baseline using the standard treatment regimen. The multi-way analysis showed eligibility for short-course treatment and treatment initiation greatly influenced the impacts of short-course treatment regimens on reductions in MDR-TB cases and percentage resistance among new infections. Policies which promote the expansion of short-course regimens and early MDR-TB treatment initiation should be considered along with other interventions to tackle antimicrobial resistance in the region.
doi_str_mv 10.1371/journal.pone.0248846
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2505670337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656418695</galeid><doaj_id>oai_doaj_org_article_58ad365a820b4258a602917ed17018f5</doaj_id><sourcerecordid>A656418695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5ac8a1960e853ff9dfb1142323990964266e48496c1fe53ab110d599b508c84a3</originalsourceid><addsrcrecordid>eNqNU22L1DAQLqJ45-k_EC0Ioh-6Jk2bJl-E5fBl4eDgTv0aZtO0m6NtenkR_R_-YNPd3rGV-yCBJp155pnMk5kkeYnRCpMKf7gxwQ7QrUYzqBXKC8YK-ig5xZzkGc0ReXx0PkmeOXeDUEkYpU-TE0KqCmFUnCZ_1s4p5_TQpn6nUt2PIL1LTZO6nbE-kzGLU2kfOq9rG9rMKqedh8GnPmyVlaEz0ZB6q8D3Kpr1sGe6NiFu4Hy6dhrSK9VqM6RhnwnSHqIzfrSELu1Nrbq9fRytAbl7njxpoHPqxbyfJd8_f_p2_jW7uPyyOV9fZJLy3GclSAaYU6RYSZqG180W4yInOeEccVrklKqCFZxK3KiSQPSiuuR8WyImWQHkLHl94B1jEWIW1Im8RCWtUBQpIjYHRG3gRoxW92B_CwNa7A3GtgJsrKJTomRQE1oCy9G2yOMfRTnHlapxlJo1ZeT6OGcL217VMoploVuQLj2D3onW_BQV5xVC02XezQTW3AblvOi1k6rrYFAm7O9N84qSYsr15h_ow9XNqBZiAXpoTMwrJ1KxpiUtMKN84lo9gIqrVr2WsfsaHe2LgPeLgIjx6pdvITgnNtdX_4-9_LHEvj3Cxubq_M6ZLvjYWW4JLA5AaY1zVjX3ImMkpuG5U0NMwyPm4Ylhr44f6D7oblrIX7SpFj4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505670337</pqid></control><display><type>article</type><title>Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Han, Win Min ; Mahikul, Wiriya ; Pouplin, Thomas ; Lawpoolsri, Saranath ; White, Lisa J ; Pan-Ngum, Wirichada</creator><contributor>Smith, Rebecca Lee</contributor><creatorcontrib>Han, Win Min ; Mahikul, Wiriya ; Pouplin, Thomas ; Lawpoolsri, Saranath ; White, Lisa J ; Pan-Ngum, Wirichada ; Smith, Rebecca Lee</creatorcontrib><description>This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the transmission of TB and the MDR-TB situation in the Southeast Asia region. The population-level impacts of short-course treatment regimens were compared with the impacts of conventional regimens. Multi-way analysis was used to evaluate the impact by varying programmatic factors (eligibility for short-course MDR-TB treatment, treatment initiation, and drug susceptibility test (DST) coverage). The model predicted that overall TB incidence will be reduced from 246 (95% credible intervals (CrI), 221-275) per 100,000 population in 2020 to 239 (95% CrI, 215-267) per 100,000 population in 2035, with a modest reduction of 2.8% (95% CrI, 2.7%-2.9%). Despite the slight reduction in overall TB infections, the model predicted that the MDR-TB percentage among newly notified TB infections will remain steady, with 2.4% (95% CrI, 2.1-2.9) in 2020 and 2.5% (95% CrI, 2.3-3.1) in 2035, using conventional MDR-TB treatment. With the introduction of short-course regimens to treat MDR-TB, the development of resistance can be slowed by 38.6% (95% confidence intervals (CI), 35.9-41.3) reduction in MDR-TB case number, and 37.6% (95% CI, 34.9-40.3) reduction in MDR-TB percentage among new TB infections over the 30-year period compared with the baseline using the standard treatment regimen. The multi-way analysis showed eligibility for short-course treatment and treatment initiation greatly influenced the impacts of short-course treatment regimens on reductions in MDR-TB cases and percentage resistance among new infections. Policies which promote the expansion of short-course regimens and early MDR-TB treatment initiation should be considered along with other interventions to tackle antimicrobial resistance in the region.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0248846</identifier><identifier>PMID: 33770104</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayesian analysis ; Biology and Life Sciences ; Care and treatment ; Data analysis ; Disease ; Disease transmission ; Drug resistance ; Economic models ; Editing ; Health risks ; HIV ; Human immunodeficiency virus ; Hygiene ; Infections ; Markov chains ; Mathematical models ; Medical science ; Medicine ; Medicine and Health Sciences ; Methodology ; Monte Carlo simulation ; Multidrug resistance ; Multidrug resistant organisms ; Ordinary differential equations ; Parameter estimation ; People and Places ; Pharmacology ; Physical Sciences ; Population ; Public health ; Research facilities ; Rifampin ; Tuberculosis ; Visualization</subject><ispartof>PloS one, 2021-03, Vol.16 (3), p.e0248846-e0248846</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Han et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Han et al 2021 Han et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5ac8a1960e853ff9dfb1142323990964266e48496c1fe53ab110d599b508c84a3</citedby><cites>FETCH-LOGICAL-c692t-5ac8a1960e853ff9dfb1142323990964266e48496c1fe53ab110d599b508c84a3</cites><orcidid>0000-0003-3731-7960 ; 0000-0002-9839-5359</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997007/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7997007/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33770104$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Smith, Rebecca Lee</contributor><creatorcontrib>Han, Win Min</creatorcontrib><creatorcontrib>Mahikul, Wiriya</creatorcontrib><creatorcontrib>Pouplin, Thomas</creatorcontrib><creatorcontrib>Lawpoolsri, Saranath</creatorcontrib><creatorcontrib>White, Lisa J</creatorcontrib><creatorcontrib>Pan-Ngum, Wirichada</creatorcontrib><title>Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the transmission of TB and the MDR-TB situation in the Southeast Asia region. The population-level impacts of short-course treatment regimens were compared with the impacts of conventional regimens. Multi-way analysis was used to evaluate the impact by varying programmatic factors (eligibility for short-course MDR-TB treatment, treatment initiation, and drug susceptibility test (DST) coverage). The model predicted that overall TB incidence will be reduced from 246 (95% credible intervals (CrI), 221-275) per 100,000 population in 2020 to 239 (95% CrI, 215-267) per 100,000 population in 2035, with a modest reduction of 2.8% (95% CrI, 2.7%-2.9%). Despite the slight reduction in overall TB infections, the model predicted that the MDR-TB percentage among newly notified TB infections will remain steady, with 2.4% (95% CrI, 2.1-2.9) in 2020 and 2.5% (95% CrI, 2.3-3.1) in 2035, using conventional MDR-TB treatment. With the introduction of short-course regimens to treat MDR-TB, the development of resistance can be slowed by 38.6% (95% confidence intervals (CI), 35.9-41.3) reduction in MDR-TB case number, and 37.6% (95% CI, 34.9-40.3) reduction in MDR-TB percentage among new TB infections over the 30-year period compared with the baseline using the standard treatment regimen. The multi-way analysis showed eligibility for short-course treatment and treatment initiation greatly influenced the impacts of short-course treatment regimens on reductions in MDR-TB cases and percentage resistance among new infections. Policies which promote the expansion of short-course regimens and early MDR-TB treatment initiation should be considered along with other interventions to tackle antimicrobial resistance in the region.</description><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Care and treatment</subject><subject>Data analysis</subject><subject>Disease</subject><subject>Disease transmission</subject><subject>Drug resistance</subject><subject>Economic models</subject><subject>Editing</subject><subject>Health risks</subject><subject>HIV</subject><subject>Human immunodeficiency virus</subject><subject>Hygiene</subject><subject>Infections</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Medical science</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Monte Carlo simulation</subject><subject>Multidrug resistance</subject><subject>Multidrug resistant organisms</subject><subject>Ordinary differential equations</subject><subject>Parameter estimation</subject><subject>People and Places</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Population</subject><subject>Public health</subject><subject>Research facilities</subject><subject>Rifampin</subject><subject>Tuberculosis</subject><subject>Visualization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNU22L1DAQLqJ45-k_EC0Ioh-6Jk2bJl-E5fBl4eDgTv0aZtO0m6NtenkR_R_-YNPd3rGV-yCBJp155pnMk5kkeYnRCpMKf7gxwQ7QrUYzqBXKC8YK-ig5xZzkGc0ReXx0PkmeOXeDUEkYpU-TE0KqCmFUnCZ_1s4p5_TQpn6nUt2PIL1LTZO6nbE-kzGLU2kfOq9rG9rMKqedh8GnPmyVlaEz0ZB6q8D3Kpr1sGe6NiFu4Hy6dhrSK9VqM6RhnwnSHqIzfrSELu1Nrbq9fRytAbl7njxpoHPqxbyfJd8_f_p2_jW7uPyyOV9fZJLy3GclSAaYU6RYSZqG180W4yInOeEccVrklKqCFZxK3KiSQPSiuuR8WyImWQHkLHl94B1jEWIW1Im8RCWtUBQpIjYHRG3gRoxW92B_CwNa7A3GtgJsrKJTomRQE1oCy9G2yOMfRTnHlapxlJo1ZeT6OGcL217VMoploVuQLj2D3onW_BQV5xVC02XezQTW3AblvOi1k6rrYFAm7O9N84qSYsr15h_ow9XNqBZiAXpoTMwrJ1KxpiUtMKN84lo9gIqrVr2WsfsaHe2LgPeLgIjx6pdvITgnNtdX_4-9_LHEvj3Cxubq_M6ZLvjYWW4JLA5AaY1zVjX3ImMkpuG5U0NMwyPm4Ylhr44f6D7oblrIX7SpFj4</recordid><startdate>20210326</startdate><enddate>20210326</enddate><creator>Han, Win Min</creator><creator>Mahikul, Wiriya</creator><creator>Pouplin, Thomas</creator><creator>Lawpoolsri, Saranath</creator><creator>White, Lisa J</creator><creator>Pan-Ngum, Wirichada</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3731-7960</orcidid><orcidid>https://orcid.org/0000-0002-9839-5359</orcidid></search><sort><creationdate>20210326</creationdate><title>Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach</title><author>Han, Win Min ; Mahikul, Wiriya ; Pouplin, Thomas ; Lawpoolsri, Saranath ; White, Lisa J ; Pan-Ngum, Wirichada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5ac8a1960e853ff9dfb1142323990964266e48496c1fe53ab110d599b508c84a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Care and treatment</topic><topic>Data analysis</topic><topic>Disease</topic><topic>Disease transmission</topic><topic>Drug resistance</topic><topic>Economic models</topic><topic>Editing</topic><topic>Health risks</topic><topic>HIV</topic><topic>Human immunodeficiency virus</topic><topic>Hygiene</topic><topic>Infections</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Medical science</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Monte Carlo simulation</topic><topic>Multidrug resistance</topic><topic>Multidrug resistant organisms</topic><topic>Ordinary differential equations</topic><topic>Parameter estimation</topic><topic>People and Places</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Population</topic><topic>Public health</topic><topic>Research facilities</topic><topic>Rifampin</topic><topic>Tuberculosis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Win Min</creatorcontrib><creatorcontrib>Mahikul, Wiriya</creatorcontrib><creatorcontrib>Pouplin, Thomas</creatorcontrib><creatorcontrib>Lawpoolsri, Saranath</creatorcontrib><creatorcontrib>White, Lisa J</creatorcontrib><creatorcontrib>Pan-Ngum, Wirichada</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Win Min</au><au>Mahikul, Wiriya</au><au>Pouplin, Thomas</au><au>Lawpoolsri, Saranath</au><au>White, Lisa J</au><au>Pan-Ngum, Wirichada</au><au>Smith, Rebecca Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-03-26</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>e0248846</spage><epage>e0248846</epage><pages>e0248846-e0248846</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study aimed to predict the impacts of shorter duration treatment regimens for multidrug-resistant tuberculosis (MDR-TB) on both MDR-TB percentage among new cases and overall MDR-TB cases in the WHO Southeast Asia Region. A deterministic compartmental model was constructed to describe both the transmission of TB and the MDR-TB situation in the Southeast Asia region. The population-level impacts of short-course treatment regimens were compared with the impacts of conventional regimens. Multi-way analysis was used to evaluate the impact by varying programmatic factors (eligibility for short-course MDR-TB treatment, treatment initiation, and drug susceptibility test (DST) coverage). The model predicted that overall TB incidence will be reduced from 246 (95% credible intervals (CrI), 221-275) per 100,000 population in 2020 to 239 (95% CrI, 215-267) per 100,000 population in 2035, with a modest reduction of 2.8% (95% CrI, 2.7%-2.9%). Despite the slight reduction in overall TB infections, the model predicted that the MDR-TB percentage among newly notified TB infections will remain steady, with 2.4% (95% CrI, 2.1-2.9) in 2020 and 2.5% (95% CrI, 2.3-3.1) in 2035, using conventional MDR-TB treatment. With the introduction of short-course regimens to treat MDR-TB, the development of resistance can be slowed by 38.6% (95% confidence intervals (CI), 35.9-41.3) reduction in MDR-TB case number, and 37.6% (95% CI, 34.9-40.3) reduction in MDR-TB percentage among new TB infections over the 30-year period compared with the baseline using the standard treatment regimen. The multi-way analysis showed eligibility for short-course treatment and treatment initiation greatly influenced the impacts of short-course treatment regimens on reductions in MDR-TB cases and percentage resistance among new infections. Policies which promote the expansion of short-course regimens and early MDR-TB treatment initiation should be considered along with other interventions to tackle antimicrobial resistance in the region.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33770104</pmid><doi>10.1371/journal.pone.0248846</doi><tpages>e0248846</tpages><orcidid>https://orcid.org/0000-0003-3731-7960</orcidid><orcidid>https://orcid.org/0000-0002-9839-5359</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-03, Vol.16 (3), p.e0248846-e0248846
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2505670337
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Bayesian analysis
Biology and Life Sciences
Care and treatment
Data analysis
Disease
Disease transmission
Drug resistance
Economic models
Editing
Health risks
HIV
Human immunodeficiency virus
Hygiene
Infections
Markov chains
Mathematical models
Medical science
Medicine
Medicine and Health Sciences
Methodology
Monte Carlo simulation
Multidrug resistance
Multidrug resistant organisms
Ordinary differential equations
Parameter estimation
People and Places
Pharmacology
Physical Sciences
Population
Public health
Research facilities
Rifampin
Tuberculosis
Visualization
title Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A31%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20impacts%20of%20short-course%20multidrug-resistant%20tuberculosis%20treatment%20in%20the%20Southeast%20Asia%20Region%20using%20a%20mathematical%20modeling%20approach&rft.jtitle=PloS%20one&rft.au=Han,%20Win%20Min&rft.date=2021-03-26&rft.volume=16&rft.issue=3&rft.spage=e0248846&rft.epage=e0248846&rft.pages=e0248846-e0248846&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0248846&rft_dat=%3Cgale_plos_%3EA656418695%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505670337&rft_id=info:pmid/33770104&rft_galeid=A656418695&rft_doaj_id=oai_doaj_org_article_58ad365a820b4258a602917ed17018f5&rfr_iscdi=true