Model-free estimation of COVID-19 transmission dynamics from a complete outbreak
Examines the COVID-19 epidemic transmission tree in New Zealand using detailed case data and contact tracing information, noting it is an unusual dataset because it describes a closed outbreak in which there are no ongoing transmission chains, and many cases are epidemiologically linked to a likely...
Gespeichert in:
Veröffentlicht in: | PloS one 2021-03, Vol.16 (3), p.e0238800-e0238800 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0238800 |
---|---|
container_issue | 3 |
container_start_page | e0238800 |
container_title | PloS one |
container_volume | 16 |
creator | James, Alex |
description | Examines the COVID-19 epidemic transmission tree in New Zealand using detailed case data and contact tracing information, noting it is an unusual dataset because it describes a closed outbreak in which there are no ongoing transmission chains, and many cases are epidemiologically linked to a likely index case. Uses Monte-Carlo network construction techniques to provide an estimate of the number of secondary cases for every individual infected during the outbreak, then applies standard statistical techniques to quantify differences between groups of individuals. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence. |
doi_str_mv | 10.1371/journal.pone.0238800 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2504774558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A656135350</galeid><doaj_id>oai_doaj_org_article_079ecc9304a54045b921c5e84c6139d3</doaj_id><sourcerecordid>A656135350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c720t-40490bcdda07eaa740afc6bfd0e4d31c3cc2060e9cb0cdf81c3d57d24556dbf3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJwyOLEcRxfkKrla6WiRVD1ajn2ZDeLE2_tBLX8ema7admgHlAOjsbPvJ55Z6LoeUpmKeXpu40bfKfsbOs6mJGMliUhD6LjVNAsKTJCHx78H0VPQtgQwmhZFI-jI0p5QcqUH0ffvjoDNqk9QAyhb1rVN66LXR3PlxeLD0kq4t6rLrRNCLsLc92pttEhrr1rYxVr124t9BC7oa88qJ9Po0e1sgGejedJdP7p4_n8S3K2_LyYn54lmmekT3KSC1JpYxThoBTPiap1UdWGQG5oqqnWGSkICF0RbeoSI4Zxk-WMFaaq6Un0ci-7tS7I0YsgM0ZyzhEqkVjsCePURm49tuavpVONvAk4v5LK9422IAkXoLWgJFcMC2OVyFLNoMx1kVJhKGq9H18bqhaMhg5NsRPR6U3XrOXK_ZJcCJKlDAXejALeXQ5otERDNVirOnDDTd2MFpyWAtFX_6D3dzdSK4UNNF3t8F29E5WnBcOyGWUEqdk9FH4GcIi4OHWD8UnC20kCMj1c9Ss1hCAXP77_P7u8mLKvD9g1KNuvg7PDbtnCFMz3oPYuBA_1nckpkbu9v3VD7vZejnuPaS8OB3SXdLvof_3qbPcbizVwhafA8ZRM5BlOqaSc_gGijwc6</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504774558</pqid></control><display><type>article</type><title>Model-free estimation of COVID-19 transmission dynamics from a complete outbreak</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Index New Zealand (Open Access)</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>James, Alex</creator><contributor>Forgoston, Eric</contributor><creatorcontrib>James, Alex ; Forgoston, Eric</creatorcontrib><description>Examines the COVID-19 epidemic transmission tree in New Zealand using detailed case data and contact tracing information, noting it is an unusual dataset because it describes a closed outbreak in which there are no ongoing transmission chains, and many cases are epidemiologically linked to a likely index case. Uses Monte-Carlo network construction techniques to provide an estimate of the number of secondary cases for every individual infected during the outbreak, then applies standard statistical techniques to quantify differences between groups of individuals. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0238800</identifier><identifier>PMID: 33760817</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Age ; Asymptomatic ; Bans ; Contact tracing ; Contact Tracing - methods ; Contact Tracing - statistics & numerical data ; Control ; Coronaviruses ; COVID-19 ; COVID-19 (Disease) ; COVID-19 - epidemiology ; COVID-19 - prevention & control ; COVID-19 - transmission ; Data processing ; Disease Outbreaks - prevention & control ; Disease transmission ; Editing ; Epidemics ; Epidemics - prevention & control ; Epidemiology ; Humans ; Infections ; Investigations ; Medicine and Health Sciences ; Methodology ; Monte Carlo Method ; New Zealand ; New Zealand - epidemiology ; People and places ; Physical Distancing ; Physics ; Quarantine ; SARS-CoV-2 - metabolism ; SARS-CoV-2 - pathogenicity ; School closures ; Social Sciences ; Statistics ; Transmission</subject><ispartof>PloS one, 2021-03, Vol.16 (3), p.e0238800-e0238800</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 James et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 James et al 2021 James et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c720t-40490bcdda07eaa740afc6bfd0e4d31c3cc2060e9cb0cdf81c3d57d24556dbf3</citedby><cites>FETCH-LOGICAL-c720t-40490bcdda07eaa740afc6bfd0e4d31c3cc2060e9cb0cdf81c3d57d24556dbf3</cites><orcidid>0000-0001-8904-2941 ; 0000-0002-7539-3465 ; 0000-0002-0869-3847 ; 0000-0002-1543-7139 ; 0000-0003-3468-6517 ; 0000-0002-3433-0417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990215/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7990215/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,25948,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://natlib-primo.hosted.exlibrisgroup.com/primo-explore/search?query=any,contains,999085942902837&tab=innz&search_scope=INNZ&vid=NLNZ&offset=0$$DView this record in NLNZ$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33760817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Forgoston, Eric</contributor><creatorcontrib>James, Alex</creatorcontrib><title>Model-free estimation of COVID-19 transmission dynamics from a complete outbreak</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Examines the COVID-19 epidemic transmission tree in New Zealand using detailed case data and contact tracing information, noting it is an unusual dataset because it describes a closed outbreak in which there are no ongoing transmission chains, and many cases are epidemiologically linked to a likely index case. Uses Monte-Carlo network construction techniques to provide an estimate of the number of secondary cases for every individual infected during the outbreak, then applies standard statistical techniques to quantify differences between groups of individuals. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.</description><subject>Age</subject><subject>Asymptomatic</subject><subject>Bans</subject><subject>Contact tracing</subject><subject>Contact Tracing - methods</subject><subject>Contact Tracing - statistics & numerical data</subject><subject>Control</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 (Disease)</subject><subject>COVID-19 - epidemiology</subject><subject>COVID-19 - prevention & control</subject><subject>COVID-19 - transmission</subject><subject>Data processing</subject><subject>Disease Outbreaks - prevention & control</subject><subject>Disease transmission</subject><subject>Editing</subject><subject>Epidemics</subject><subject>Epidemics - prevention & control</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Infections</subject><subject>Investigations</subject><subject>Medicine and Health Sciences</subject><subject>Methodology</subject><subject>Monte Carlo Method</subject><subject>New Zealand</subject><subject>New Zealand - epidemiology</subject><subject>People and places</subject><subject>Physical Distancing</subject><subject>Physics</subject><subject>Quarantine</subject><subject>SARS-CoV-2 - metabolism</subject><subject>SARS-CoV-2 - pathogenicity</subject><subject>School closures</subject><subject>Social Sciences</subject><subject>Statistics</subject><subject>Transmission</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>LETOP</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJwyOLEcRxfkKrla6WiRVD1ajn2ZDeLE2_tBLX8ema7admgHlAOjsbPvJ55Z6LoeUpmKeXpu40bfKfsbOs6mJGMliUhD6LjVNAsKTJCHx78H0VPQtgQwmhZFI-jI0p5QcqUH0ffvjoDNqk9QAyhb1rVN66LXR3PlxeLD0kq4t6rLrRNCLsLc92pttEhrr1rYxVr124t9BC7oa88qJ9Po0e1sgGejedJdP7p4_n8S3K2_LyYn54lmmekT3KSC1JpYxThoBTPiap1UdWGQG5oqqnWGSkICF0RbeoSI4Zxk-WMFaaq6Un0ci-7tS7I0YsgM0ZyzhEqkVjsCePURm49tuavpVONvAk4v5LK9422IAkXoLWgJFcMC2OVyFLNoMx1kVJhKGq9H18bqhaMhg5NsRPR6U3XrOXK_ZJcCJKlDAXejALeXQ5otERDNVirOnDDTd2MFpyWAtFX_6D3dzdSK4UNNF3t8F29E5WnBcOyGWUEqdk9FH4GcIi4OHWD8UnC20kCMj1c9Ss1hCAXP77_P7u8mLKvD9g1KNuvg7PDbtnCFMz3oPYuBA_1nckpkbu9v3VD7vZejnuPaS8OB3SXdLvof_3qbPcbizVwhafA8ZRM5BlOqaSc_gGijwc6</recordid><startdate>20210324</startdate><enddate>20210324</enddate><creator>James, Alex</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>GOM</scope><scope>LETOP</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>COVID</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8904-2941</orcidid><orcidid>https://orcid.org/0000-0002-7539-3465</orcidid><orcidid>https://orcid.org/0000-0002-0869-3847</orcidid><orcidid>https://orcid.org/0000-0002-1543-7139</orcidid><orcidid>https://orcid.org/0000-0003-3468-6517</orcidid><orcidid>https://orcid.org/0000-0002-3433-0417</orcidid></search><sort><creationdate>20210324</creationdate><title>Model-free estimation of COVID-19 transmission dynamics from a complete outbreak</title><author>James, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c720t-40490bcdda07eaa740afc6bfd0e4d31c3cc2060e9cb0cdf81c3d57d24556dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Asymptomatic</topic><topic>Bans</topic><topic>Contact tracing</topic><topic>Contact Tracing - methods</topic><topic>Contact Tracing - statistics & numerical data</topic><topic>Control</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 (Disease)</topic><topic>COVID-19 - epidemiology</topic><topic>COVID-19 - prevention & control</topic><topic>COVID-19 - transmission</topic><topic>Data processing</topic><topic>Disease Outbreaks - prevention & control</topic><topic>Disease transmission</topic><topic>Editing</topic><topic>Epidemics</topic><topic>Epidemics - prevention & control</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Infections</topic><topic>Investigations</topic><topic>Medicine and Health Sciences</topic><topic>Methodology</topic><topic>Monte Carlo Method</topic><topic>New Zealand</topic><topic>New Zealand - epidemiology</topic><topic>People and places</topic><topic>Physical Distancing</topic><topic>Physics</topic><topic>Quarantine</topic><topic>SARS-CoV-2 - metabolism</topic><topic>SARS-CoV-2 - pathogenicity</topic><topic>School closures</topic><topic>Social Sciences</topic><topic>Statistics</topic><topic>Transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>James, Alex</creatorcontrib><collection>Index New Zealand</collection><collection>Index New Zealand (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>James, Alex</au><au>Forgoston, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-free estimation of COVID-19 transmission dynamics from a complete outbreak</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-03-24</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>e0238800</spage><epage>e0238800</epage><pages>e0238800-e0238800</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Examines the COVID-19 epidemic transmission tree in New Zealand using detailed case data and contact tracing information, noting it is an unusual dataset because it describes a closed outbreak in which there are no ongoing transmission chains, and many cases are epidemiologically linked to a likely index case. Uses Monte-Carlo network construction techniques to provide an estimate of the number of secondary cases for every individual infected during the outbreak, then applies standard statistical techniques to quantify differences between groups of individuals. Source: National Library of New Zealand Te Puna Matauranga o Aotearoa, licensed by the Department of Internal Affairs for re-use under the Creative Commons Attribution 3.0 New Zealand Licence.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33760817</pmid><doi>10.1371/journal.pone.0238800</doi><orcidid>https://orcid.org/0000-0001-8904-2941</orcidid><orcidid>https://orcid.org/0000-0002-7539-3465</orcidid><orcidid>https://orcid.org/0000-0002-0869-3847</orcidid><orcidid>https://orcid.org/0000-0002-1543-7139</orcidid><orcidid>https://orcid.org/0000-0003-3468-6517</orcidid><orcidid>https://orcid.org/0000-0002-3433-0417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2021-03, Vol.16 (3), p.e0238800-e0238800 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2504774558 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Index New Zealand (Open Access); Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Age Asymptomatic Bans Contact tracing Contact Tracing - methods Contact Tracing - statistics & numerical data Control Coronaviruses COVID-19 COVID-19 (Disease) COVID-19 - epidemiology COVID-19 - prevention & control COVID-19 - transmission Data processing Disease Outbreaks - prevention & control Disease transmission Editing Epidemics Epidemics - prevention & control Epidemiology Humans Infections Investigations Medicine and Health Sciences Methodology Monte Carlo Method New Zealand New Zealand - epidemiology People and places Physical Distancing Physics Quarantine SARS-CoV-2 - metabolism SARS-CoV-2 - pathogenicity School closures Social Sciences Statistics Transmission |
title | Model-free estimation of COVID-19 transmission dynamics from a complete outbreak |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-free%20estimation%20of%20COVID-19%20transmission%20dynamics%20from%20a%20complete%20outbreak&rft.jtitle=PloS%20one&rft.au=James,%20Alex&rft.date=2021-03-24&rft.volume=16&rft.issue=3&rft.spage=e0238800&rft.epage=e0238800&rft.pages=e0238800-e0238800&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0238800&rft_dat=%3Cgale_plos_%3EA656135350%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504774558&rft_id=info:pmid/33760817&rft_galeid=A656135350&rft_doaj_id=oai_doaj_org_article_079ecc9304a54045b921c5e84c6139d3&rfr_iscdi=true |