Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry

Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2021-02, Vol.17 (2), p.e1009312-e1009312
Hauptverfasser: Schafer, Adam, Xiong, Rui, Cooper, Laura, Nowar, Raghad, Lee, Hyun, Li, Yangfeng, Ramirez, Benjamin E, Peet, Norton P, Caffrey, Michael, Thatcher, Gregory R J, Saphire, Erica Ollmann, Cheng, Han, Rong, Lijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1009312
container_issue 2
container_start_page e1009312
container_title PLoS pathogens
container_volume 17
creator Schafer, Adam
Xiong, Rui
Cooper, Laura
Nowar, Raghad
Lee, Hyun
Li, Yangfeng
Ramirez, Benjamin E
Peet, Norton P
Caffrey, Michael
Thatcher, Gregory R J
Saphire, Erica Ollmann
Cheng, Han
Rong, Lijun
description Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.
doi_str_mv 10.1371/JOURNAL.PPAT.1009312
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2501883520</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_513584dcab26402ea212101359422d10</doaj_id><sourcerecordid>2501883520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4412-5bc1bd1ca3da2f1d93fe6656132d699a18accf3ed14d72a8c91d092ec715c7f93</originalsourceid><addsrcrecordid>eNptUk1vEzEQtRCIlsI_QLASFy4JHn_s2hekqCpQFNEItWfL64_GkXcd7N1I_fdsmrRqEacZzbz3Zp70EHoPeA60gS8_r25-_1os56vV4noOGEsK5AU6Bc7prKENe_mkP0FvStlgzIBC_RqdUMqpZJScotXFLljXG1f5lCsbyhB6M1SdM2vdh9KVKvmqdDrGqkvRmTG6KvTr0IYh5fulDzHtQh5L5foh371Fr7yOxb071jN08-3i-vzHbHn1_fJ8sZwZxoDMeGugtWA0tZp4sJJ6V9e8BkpsLaUGoY3x1FlgtiFaGAkWS-JMA9w0XtIz9PGgu42pqE0acz-dU4RjEIJygifE5QFhk96obQ6dzncq6aDuBynfKp2HYKJTHCgXzBrdkpph4jQBAngaSkaIhb3W1-O1se2cNXurOj4Tfb7pw1rdpp1qhBA1ppPA56NATn9GVwbVhWJcjLp3aZz-ZmJyRmq-d_bpH-j_3bEDyuRUSnb-8RnAah-QB5babvWgjgGZaB-eGnkkPSSC_gURZrgG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501883520</pqid></control><display><type>article</type><title>Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Schafer, Adam ; Xiong, Rui ; Cooper, Laura ; Nowar, Raghad ; Lee, Hyun ; Li, Yangfeng ; Ramirez, Benjamin E ; Peet, Norton P ; Caffrey, Michael ; Thatcher, Gregory R J ; Saphire, Erica Ollmann ; Cheng, Han ; Rong, Lijun</creator><contributor>Kuhn, Jens H.</contributor><creatorcontrib>Schafer, Adam ; Xiong, Rui ; Cooper, Laura ; Nowar, Raghad ; Lee, Hyun ; Li, Yangfeng ; Ramirez, Benjamin E ; Peet, Norton P ; Caffrey, Michael ; Thatcher, Gregory R J ; Saphire, Erica Ollmann ; Cheng, Han ; Rong, Lijun ; Kuhn, Jens H.</creatorcontrib><description>Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/JOURNAL.PPAT.1009312</identifier><identifier>PMID: 33539432</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibodies ; Aromatic compounds ; Binding ; Binding sites ; Biology and life sciences ; Bioterrorism ; Crystal structure ; Drug dosages ; Ebola virus ; Ebolavirus ; Engineering and Technology ; Fatalities ; Glycoproteins ; Homology ; Infectious diseases ; Inhibitors ; Marburg disease ; Medicine and Health Sciences ; Molecular structure ; Mutants ; Mutation ; Nucleotide sequence ; Physical Sciences ; Research and Analysis Methods ; Residues ; T shape ; Toremifene ; Tyrosine ; Viral diseases ; Viral infections ; Viruses</subject><ispartof>PLoS pathogens, 2021-02, Vol.17 (2), p.e1009312-e1009312</ispartof><rights>2021 Schafer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Schafer et al 2021 Schafer et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4412-5bc1bd1ca3da2f1d93fe6656132d699a18accf3ed14d72a8c91d092ec715c7f93</citedby><cites>FETCH-LOGICAL-c4412-5bc1bd1ca3da2f1d93fe6656132d699a18accf3ed14d72a8c91d092ec715c7f93</cites><orcidid>0000-0002-6322-1260 ; 0000-0002-1047-1477 ; 0000-0003-3938-0445 ; 0000-0003-2570-8120 ; 0000-0002-7757-1739 ; 0000-0002-6119-1336 ; 0000-0002-6350-9037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888603/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888603/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33539432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Kuhn, Jens H.</contributor><creatorcontrib>Schafer, Adam</creatorcontrib><creatorcontrib>Xiong, Rui</creatorcontrib><creatorcontrib>Cooper, Laura</creatorcontrib><creatorcontrib>Nowar, Raghad</creatorcontrib><creatorcontrib>Lee, Hyun</creatorcontrib><creatorcontrib>Li, Yangfeng</creatorcontrib><creatorcontrib>Ramirez, Benjamin E</creatorcontrib><creatorcontrib>Peet, Norton P</creatorcontrib><creatorcontrib>Caffrey, Michael</creatorcontrib><creatorcontrib>Thatcher, Gregory R J</creatorcontrib><creatorcontrib>Saphire, Erica Ollmann</creatorcontrib><creatorcontrib>Cheng, Han</creatorcontrib><creatorcontrib>Rong, Lijun</creatorcontrib><title>Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.</description><subject>Antibodies</subject><subject>Aromatic compounds</subject><subject>Binding</subject><subject>Binding sites</subject><subject>Biology and life sciences</subject><subject>Bioterrorism</subject><subject>Crystal structure</subject><subject>Drug dosages</subject><subject>Ebola virus</subject><subject>Ebolavirus</subject><subject>Engineering and Technology</subject><subject>Fatalities</subject><subject>Glycoproteins</subject><subject>Homology</subject><subject>Infectious diseases</subject><subject>Inhibitors</subject><subject>Marburg disease</subject><subject>Medicine and Health Sciences</subject><subject>Molecular structure</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Nucleotide sequence</subject><subject>Physical Sciences</subject><subject>Research and Analysis Methods</subject><subject>Residues</subject><subject>T shape</subject><subject>Toremifene</subject><subject>Tyrosine</subject><subject>Viral diseases</subject><subject>Viral infections</subject><subject>Viruses</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQtRCIlsI_QLASFy4JHn_s2hekqCpQFNEItWfL64_GkXcd7N1I_fdsmrRqEacZzbz3Zp70EHoPeA60gS8_r25-_1os56vV4noOGEsK5AU6Bc7prKENe_mkP0FvStlgzIBC_RqdUMqpZJScotXFLljXG1f5lCsbyhB6M1SdM2vdh9KVKvmqdDrGqkvRmTG6KvTr0IYh5fulDzHtQh5L5foh371Fr7yOxb071jN08-3i-vzHbHn1_fJ8sZwZxoDMeGugtWA0tZp4sJJ6V9e8BkpsLaUGoY3x1FlgtiFaGAkWS-JMA9w0XtIz9PGgu42pqE0acz-dU4RjEIJygifE5QFhk96obQ6dzncq6aDuBynfKp2HYKJTHCgXzBrdkpph4jQBAngaSkaIhb3W1-O1se2cNXurOj4Tfb7pw1rdpp1qhBA1ppPA56NATn9GVwbVhWJcjLp3aZz-ZmJyRmq-d_bpH-j_3bEDyuRUSnb-8RnAah-QB5babvWgjgGZaB-eGnkkPSSC_gURZrgG</recordid><startdate>202102</startdate><enddate>202102</enddate><creator>Schafer, Adam</creator><creator>Xiong, Rui</creator><creator>Cooper, Laura</creator><creator>Nowar, Raghad</creator><creator>Lee, Hyun</creator><creator>Li, Yangfeng</creator><creator>Ramirez, Benjamin E</creator><creator>Peet, Norton P</creator><creator>Caffrey, Michael</creator><creator>Thatcher, Gregory R J</creator><creator>Saphire, Erica Ollmann</creator><creator>Cheng, Han</creator><creator>Rong, Lijun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6322-1260</orcidid><orcidid>https://orcid.org/0000-0002-1047-1477</orcidid><orcidid>https://orcid.org/0000-0003-3938-0445</orcidid><orcidid>https://orcid.org/0000-0003-2570-8120</orcidid><orcidid>https://orcid.org/0000-0002-7757-1739</orcidid><orcidid>https://orcid.org/0000-0002-6119-1336</orcidid><orcidid>https://orcid.org/0000-0002-6350-9037</orcidid></search><sort><creationdate>202102</creationdate><title>Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry</title><author>Schafer, Adam ; Xiong, Rui ; Cooper, Laura ; Nowar, Raghad ; Lee, Hyun ; Li, Yangfeng ; Ramirez, Benjamin E ; Peet, Norton P ; Caffrey, Michael ; Thatcher, Gregory R J ; Saphire, Erica Ollmann ; Cheng, Han ; Rong, Lijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4412-5bc1bd1ca3da2f1d93fe6656132d699a18accf3ed14d72a8c91d092ec715c7f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antibodies</topic><topic>Aromatic compounds</topic><topic>Binding</topic><topic>Binding sites</topic><topic>Biology and life sciences</topic><topic>Bioterrorism</topic><topic>Crystal structure</topic><topic>Drug dosages</topic><topic>Ebola virus</topic><topic>Ebolavirus</topic><topic>Engineering and Technology</topic><topic>Fatalities</topic><topic>Glycoproteins</topic><topic>Homology</topic><topic>Infectious diseases</topic><topic>Inhibitors</topic><topic>Marburg disease</topic><topic>Medicine and Health Sciences</topic><topic>Molecular structure</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Nucleotide sequence</topic><topic>Physical Sciences</topic><topic>Research and Analysis Methods</topic><topic>Residues</topic><topic>T shape</topic><topic>Toremifene</topic><topic>Tyrosine</topic><topic>Viral diseases</topic><topic>Viral infections</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schafer, Adam</creatorcontrib><creatorcontrib>Xiong, Rui</creatorcontrib><creatorcontrib>Cooper, Laura</creatorcontrib><creatorcontrib>Nowar, Raghad</creatorcontrib><creatorcontrib>Lee, Hyun</creatorcontrib><creatorcontrib>Li, Yangfeng</creatorcontrib><creatorcontrib>Ramirez, Benjamin E</creatorcontrib><creatorcontrib>Peet, Norton P</creatorcontrib><creatorcontrib>Caffrey, Michael</creatorcontrib><creatorcontrib>Thatcher, Gregory R J</creatorcontrib><creatorcontrib>Saphire, Erica Ollmann</creatorcontrib><creatorcontrib>Cheng, Han</creatorcontrib><creatorcontrib>Rong, Lijun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schafer, Adam</au><au>Xiong, Rui</au><au>Cooper, Laura</au><au>Nowar, Raghad</au><au>Lee, Hyun</au><au>Li, Yangfeng</au><au>Ramirez, Benjamin E</au><au>Peet, Norton P</au><au>Caffrey, Michael</au><au>Thatcher, Gregory R J</au><au>Saphire, Erica Ollmann</au><au>Cheng, Han</au><au>Rong, Lijun</au><au>Kuhn, Jens H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2021-02</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>e1009312</spage><epage>e1009312</epage><pages>e1009312-e1009312</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Many small molecules have been identified as entry inhibitors of filoviruses. However, a lack of understanding of the mechanism of action for these molecules limits further their development as anti-filoviral agents. Here we provide evidence that toremifene and other small molecule entry inhibitors have at least three distinctive mechanisms of action and lay the groundwork for future development of anti-filoviral agents. The three mechanisms identified here include: (1) direct binding to the internal fusion loop region of Ebola virus glycoprotein (GP); (2) the HR2 domain is likely the main binding site for Marburg virus GP inhibitors and a secondary binding site for some EBOV GP inhibitors; (3) lysosome trapping of GP inhibitors increases drug exposure in the lysosome and further improves the viral inhibition. Importantly, small molecules targeting different domains on GP are synergistic in inhibiting EBOV entry suggesting these two mechanisms of action are distinct. Our findings provide important mechanistic insights into filovirus entry and rational drug design for future antiviral development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33539432</pmid><doi>10.1371/JOURNAL.PPAT.1009312</doi><orcidid>https://orcid.org/0000-0002-6322-1260</orcidid><orcidid>https://orcid.org/0000-0002-1047-1477</orcidid><orcidid>https://orcid.org/0000-0003-3938-0445</orcidid><orcidid>https://orcid.org/0000-0003-2570-8120</orcidid><orcidid>https://orcid.org/0000-0002-7757-1739</orcidid><orcidid>https://orcid.org/0000-0002-6119-1336</orcidid><orcidid>https://orcid.org/0000-0002-6350-9037</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2021-02, Vol.17 (2), p.e1009312-e1009312
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_2501883520
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Antibodies
Aromatic compounds
Binding
Binding sites
Biology and life sciences
Bioterrorism
Crystal structure
Drug dosages
Ebola virus
Ebolavirus
Engineering and Technology
Fatalities
Glycoproteins
Homology
Infectious diseases
Inhibitors
Marburg disease
Medicine and Health Sciences
Molecular structure
Mutants
Mutation
Nucleotide sequence
Physical Sciences
Research and Analysis Methods
Residues
T shape
Toremifene
Tyrosine
Viral diseases
Viral infections
Viruses
title Evidence for distinct mechanisms of small molecule inhibitors of filovirus entry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T17%3A13%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20distinct%20mechanisms%20of%20small%20molecule%20inhibitors%20of%20filovirus%20entry&rft.jtitle=PLoS%20pathogens&rft.au=Schafer,%20Adam&rft.date=2021-02&rft.volume=17&rft.issue=2&rft.spage=e1009312&rft.epage=e1009312&rft.pages=e1009312-e1009312&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/JOURNAL.PPAT.1009312&rft_dat=%3Cproquest_plos_%3E2501883520%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501883520&rft_id=info:pmid/33539432&rft_doaj_id=oai_doaj_org_article_513584dcab26402ea212101359422d10&rfr_iscdi=true