Ancestral haplotype reconstruction in endogamous populations using identity-by-descent

In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2021-02, Vol.17 (2), p.e1008638-e1008638
Hauptverfasser: Finke, Kelly, Kourakos, Michael, Brown, Gabriela, Dang, Huyen Trang, Tan, Shi Jie Samuel, Simons, Yuval B, Ramdas, Shweta, Schäffer, Alejandro A, Kember, Rachel L, Bućan, Maja, Mathieson, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1008638
container_issue 2
container_start_page e1008638
container_title PLoS computational biology
container_volume 17
creator Finke, Kelly
Kourakos, Michael
Brown, Gabriela
Dang, Huyen Trang
Tan, Shi Jie Samuel
Simons, Yuval B
Ramdas, Shweta
Schäffer, Alejandro A
Kember, Rachel L
Bućan, Maja
Mathieson, Sara
description In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequency dynamics and haplotype diversity across generations, including deviations from neutrality such as transmission distortion. When studying heritable diseases, ancestral haplotypes can be used to augment genome-wide association studies and track disease inheritance patterns. The building blocks of our reconstruction algorithm are segments of Identity-By-Descent (IBD) shared between two or more genotyped individuals. The method alternates between identifying a source for each IBD segment and assembling IBD segments placed within each ancestral individual. Unlike previous approaches, our method is able to accommodate complex pedigree structures with hundreds of individuals genotyped at millions of SNPs. We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania, whose founders came to North America from Europe during the early 18th century. The pedigree includes 1338 individuals from the past 12 generations, 394 with genotype data. The motivation for reconstruction is to understand the genetic basis of diseases segregating in the family through tracking haplotype transmission over time. Using our algorithm thread, we are able to reconstruct an average of 224 ancestral individuals per chromosome. For these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also identify a region on chromosome 16 that is difficult to reconstruct-we find that this region harbors a short Amish-specific copy number variation and the gene HYDIN. thread was developed for endogamous populations, but can be applied to any extensive pedigree with the recent generations genotyped. We anticipate that this type of practical ancestral reconstruction will become more common and necessary to understand rare and complex heritable diseases in extended families.
doi_str_mv 10.1371/journal.pcbi.1008638
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2501881658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d24f8ecd506c42678b641f010b0c029d</doaj_id><sourcerecordid>2494281088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-ffa27bdd40d1a271cb27e6a6f858e133f20b9031a2ffec3cfae846166b764af63</originalsourceid><addsrcrecordid>eNptUk1P3DAUtKqiQmn_AYJIvfSSxV9xnEslhNqChMSF9mr5c_Eqawc7qbT_vg4bECBOHvvNG783GgBOEFwh0qLzTZxSkP1q0MqvEIScEf4BHKGmIXVLGv7xBT4En3PeQFhgxz6BQ0JYgQwdgb8XQds8JtlX93Lo47gbbJWsjqE8Tnr0MVQ-VDaYuJbbOOVqiMPUy7mQqyn7sK68sWH0465Wu9rYrMvtCzhwss_263Iegz-_ft5dXtU3t7-vLy9uak0bNtbOSdwqYyg0qCCkFW4tk8zxhltEiMNQdZCUmnNWE-2k5ZQhxlTLqHSMHIOzvW4ZPYvFkixwAxHniDW8MK73DBPlRgzJb2XaiSi9eHyIaS1kGr3urTCYOm61aSDTFLOWK0aRgwgqqCHuTNH6sfw2qa0186LFuFeiryvB34t1_CfajjKC2yLwfRFI8WEqvoutL371vQy2eCsw7SjmCPJ57m9vqO9vR_csnWLOybrnYRAUc0yeusQcE7HEpLSdvlzkuekpF-Q_iNy9vA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501881658</pqid></control><display><type>article</type><title>Ancestral haplotype reconstruction in endogamous populations using identity-by-descent</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Finke, Kelly ; Kourakos, Michael ; Brown, Gabriela ; Dang, Huyen Trang ; Tan, Shi Jie Samuel ; Simons, Yuval B ; Ramdas, Shweta ; Schäffer, Alejandro A ; Kember, Rachel L ; Bućan, Maja ; Mathieson, Sara</creator><contributor>Zhi, Degui</contributor><creatorcontrib>Finke, Kelly ; Kourakos, Michael ; Brown, Gabriela ; Dang, Huyen Trang ; Tan, Shi Jie Samuel ; Simons, Yuval B ; Ramdas, Shweta ; Schäffer, Alejandro A ; Kember, Rachel L ; Bućan, Maja ; Mathieson, Sara ; Zhi, Degui</creatorcontrib><description>In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequency dynamics and haplotype diversity across generations, including deviations from neutrality such as transmission distortion. When studying heritable diseases, ancestral haplotypes can be used to augment genome-wide association studies and track disease inheritance patterns. The building blocks of our reconstruction algorithm are segments of Identity-By-Descent (IBD) shared between two or more genotyped individuals. The method alternates between identifying a source for each IBD segment and assembling IBD segments placed within each ancestral individual. Unlike previous approaches, our method is able to accommodate complex pedigree structures with hundreds of individuals genotyped at millions of SNPs. We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania, whose founders came to North America from Europe during the early 18th century. The pedigree includes 1338 individuals from the past 12 generations, 394 with genotype data. The motivation for reconstruction is to understand the genetic basis of diseases segregating in the family through tracking haplotype transmission over time. Using our algorithm thread, we are able to reconstruct an average of 224 ancestral individuals per chromosome. For these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also identify a region on chromosome 16 that is difficult to reconstruct-we find that this region harbors a short Amish-specific copy number variation and the gene HYDIN. thread was developed for endogamous populations, but can be applied to any extensive pedigree with the recent generations genotyped. We anticipate that this type of practical ancestral reconstruction will become more common and necessary to understand rare and complex heritable diseases in extended families.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008638</identifier><identifier>PMID: 33635861</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Bipolar disorder ; Disease ; Earth Sciences ; Gene flow ; Genomes ; Haplotypes ; Heredity ; Marriage ; Mood ; Nuclear family ; Pedigree ; Population ; Reconstruction ; Research and Analysis Methods ; Sparse gene</subject><ispartof>PLoS computational biology, 2021-02, Vol.17 (2), p.e1008638-e1008638</ispartof><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-ffa27bdd40d1a271cb27e6a6f858e133f20b9031a2ffec3cfae846166b764af63</citedby><cites>FETCH-LOGICAL-c456t-ffa27bdd40d1a271cb27e6a6f858e133f20b9031a2ffec3cfae846166b764af63</cites><orcidid>0000-0003-2249-3478 ; 0000-0002-0037-4673 ; 0000-0001-8820-2659 ; 0000-0001-8148-4200 ; 0000-0002-0484-0838 ; 0000-0002-8534-2688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946327/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946327/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhi, Degui</contributor><creatorcontrib>Finke, Kelly</creatorcontrib><creatorcontrib>Kourakos, Michael</creatorcontrib><creatorcontrib>Brown, Gabriela</creatorcontrib><creatorcontrib>Dang, Huyen Trang</creatorcontrib><creatorcontrib>Tan, Shi Jie Samuel</creatorcontrib><creatorcontrib>Simons, Yuval B</creatorcontrib><creatorcontrib>Ramdas, Shweta</creatorcontrib><creatorcontrib>Schäffer, Alejandro A</creatorcontrib><creatorcontrib>Kember, Rachel L</creatorcontrib><creatorcontrib>Bućan, Maja</creatorcontrib><creatorcontrib>Mathieson, Sara</creatorcontrib><title>Ancestral haplotype reconstruction in endogamous populations using identity-by-descent</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequency dynamics and haplotype diversity across generations, including deviations from neutrality such as transmission distortion. When studying heritable diseases, ancestral haplotypes can be used to augment genome-wide association studies and track disease inheritance patterns. The building blocks of our reconstruction algorithm are segments of Identity-By-Descent (IBD) shared between two or more genotyped individuals. The method alternates between identifying a source for each IBD segment and assembling IBD segments placed within each ancestral individual. Unlike previous approaches, our method is able to accommodate complex pedigree structures with hundreds of individuals genotyped at millions of SNPs. We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania, whose founders came to North America from Europe during the early 18th century. The pedigree includes 1338 individuals from the past 12 generations, 394 with genotype data. The motivation for reconstruction is to understand the genetic basis of diseases segregating in the family through tracking haplotype transmission over time. Using our algorithm thread, we are able to reconstruct an average of 224 ancestral individuals per chromosome. For these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also identify a region on chromosome 16 that is difficult to reconstruct-we find that this region harbors a short Amish-specific copy number variation and the gene HYDIN. thread was developed for endogamous populations, but can be applied to any extensive pedigree with the recent generations genotyped. We anticipate that this type of practical ancestral reconstruction will become more common and necessary to understand rare and complex heritable diseases in extended families.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Bipolar disorder</subject><subject>Disease</subject><subject>Earth Sciences</subject><subject>Gene flow</subject><subject>Genomes</subject><subject>Haplotypes</subject><subject>Heredity</subject><subject>Marriage</subject><subject>Mood</subject><subject>Nuclear family</subject><subject>Pedigree</subject><subject>Population</subject><subject>Reconstruction</subject><subject>Research and Analysis Methods</subject><subject>Sparse gene</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1P3DAUtKqiQmn_AYJIvfSSxV9xnEslhNqChMSF9mr5c_Eqawc7qbT_vg4bECBOHvvNG783GgBOEFwh0qLzTZxSkP1q0MqvEIScEf4BHKGmIXVLGv7xBT4En3PeQFhgxz6BQ0JYgQwdgb8XQds8JtlX93Lo47gbbJWsjqE8Tnr0MVQ-VDaYuJbbOOVqiMPUy7mQqyn7sK68sWH0465Wu9rYrMvtCzhwss_263Iegz-_ft5dXtU3t7-vLy9uak0bNtbOSdwqYyg0qCCkFW4tk8zxhltEiMNQdZCUmnNWE-2k5ZQhxlTLqHSMHIOzvW4ZPYvFkixwAxHniDW8MK73DBPlRgzJb2XaiSi9eHyIaS1kGr3urTCYOm61aSDTFLOWK0aRgwgqqCHuTNH6sfw2qa0186LFuFeiryvB34t1_CfajjKC2yLwfRFI8WEqvoutL371vQy2eCsw7SjmCPJ57m9vqO9vR_csnWLOybrnYRAUc0yeusQcE7HEpLSdvlzkuekpF-Q_iNy9vA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Finke, Kelly</creator><creator>Kourakos, Michael</creator><creator>Brown, Gabriela</creator><creator>Dang, Huyen Trang</creator><creator>Tan, Shi Jie Samuel</creator><creator>Simons, Yuval B</creator><creator>Ramdas, Shweta</creator><creator>Schäffer, Alejandro A</creator><creator>Kember, Rachel L</creator><creator>Bućan, Maja</creator><creator>Mathieson, Sara</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2249-3478</orcidid><orcidid>https://orcid.org/0000-0002-0037-4673</orcidid><orcidid>https://orcid.org/0000-0001-8820-2659</orcidid><orcidid>https://orcid.org/0000-0001-8148-4200</orcidid><orcidid>https://orcid.org/0000-0002-0484-0838</orcidid><orcidid>https://orcid.org/0000-0002-8534-2688</orcidid></search><sort><creationdate>20210201</creationdate><title>Ancestral haplotype reconstruction in endogamous populations using identity-by-descent</title><author>Finke, Kelly ; Kourakos, Michael ; Brown, Gabriela ; Dang, Huyen Trang ; Tan, Shi Jie Samuel ; Simons, Yuval B ; Ramdas, Shweta ; Schäffer, Alejandro A ; Kember, Rachel L ; Bućan, Maja ; Mathieson, Sara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-ffa27bdd40d1a271cb27e6a6f858e133f20b9031a2ffec3cfae846166b764af63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Bipolar disorder</topic><topic>Disease</topic><topic>Earth Sciences</topic><topic>Gene flow</topic><topic>Genomes</topic><topic>Haplotypes</topic><topic>Heredity</topic><topic>Marriage</topic><topic>Mood</topic><topic>Nuclear family</topic><topic>Pedigree</topic><topic>Population</topic><topic>Reconstruction</topic><topic>Research and Analysis Methods</topic><topic>Sparse gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finke, Kelly</creatorcontrib><creatorcontrib>Kourakos, Michael</creatorcontrib><creatorcontrib>Brown, Gabriela</creatorcontrib><creatorcontrib>Dang, Huyen Trang</creatorcontrib><creatorcontrib>Tan, Shi Jie Samuel</creatorcontrib><creatorcontrib>Simons, Yuval B</creatorcontrib><creatorcontrib>Ramdas, Shweta</creatorcontrib><creatorcontrib>Schäffer, Alejandro A</creatorcontrib><creatorcontrib>Kember, Rachel L</creatorcontrib><creatorcontrib>Bućan, Maja</creatorcontrib><creatorcontrib>Mathieson, Sara</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Finke, Kelly</au><au>Kourakos, Michael</au><au>Brown, Gabriela</au><au>Dang, Huyen Trang</au><au>Tan, Shi Jie Samuel</au><au>Simons, Yuval B</au><au>Ramdas, Shweta</au><au>Schäffer, Alejandro A</au><au>Kember, Rachel L</au><au>Bućan, Maja</au><au>Mathieson, Sara</au><au>Zhi, Degui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ancestral haplotype reconstruction in endogamous populations using identity-by-descent</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>e1008638</spage><epage>e1008638</epage><pages>e1008638-e1008638</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In this work we develop a novel algorithm for reconstructing the genomes of ancestral individuals, given genotype or sequence data from contemporary individuals and an extended pedigree of family relationships. A pedigree with complete genomes for every individual enables the study of allele frequency dynamics and haplotype diversity across generations, including deviations from neutrality such as transmission distortion. When studying heritable diseases, ancestral haplotypes can be used to augment genome-wide association studies and track disease inheritance patterns. The building blocks of our reconstruction algorithm are segments of Identity-By-Descent (IBD) shared between two or more genotyped individuals. The method alternates between identifying a source for each IBD segment and assembling IBD segments placed within each ancestral individual. Unlike previous approaches, our method is able to accommodate complex pedigree structures with hundreds of individuals genotyped at millions of SNPs. We apply our method to an Old Order Amish pedigree from Lancaster, Pennsylvania, whose founders came to North America from Europe during the early 18th century. The pedigree includes 1338 individuals from the past 12 generations, 394 with genotype data. The motivation for reconstruction is to understand the genetic basis of diseases segregating in the family through tracking haplotype transmission over time. Using our algorithm thread, we are able to reconstruct an average of 224 ancestral individuals per chromosome. For these ancestral individuals, on average we reconstruct 79% of their haplotypes. We also identify a region on chromosome 16 that is difficult to reconstruct-we find that this region harbors a short Amish-specific copy number variation and the gene HYDIN. thread was developed for endogamous populations, but can be applied to any extensive pedigree with the recent generations genotyped. We anticipate that this type of practical ancestral reconstruction will become more common and necessary to understand rare and complex heritable diseases in extended families.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33635861</pmid><doi>10.1371/journal.pcbi.1008638</doi><orcidid>https://orcid.org/0000-0003-2249-3478</orcidid><orcidid>https://orcid.org/0000-0002-0037-4673</orcidid><orcidid>https://orcid.org/0000-0001-8820-2659</orcidid><orcidid>https://orcid.org/0000-0001-8148-4200</orcidid><orcidid>https://orcid.org/0000-0002-0484-0838</orcidid><orcidid>https://orcid.org/0000-0002-8534-2688</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2021-02, Vol.17 (2), p.e1008638-e1008638
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2501881658
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Biology and Life Sciences
Bipolar disorder
Disease
Earth Sciences
Gene flow
Genomes
Haplotypes
Heredity
Marriage
Mood
Nuclear family
Pedigree
Population
Reconstruction
Research and Analysis Methods
Sparse gene
title Ancestral haplotype reconstruction in endogamous populations using identity-by-descent
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A09%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ancestral%20haplotype%20reconstruction%20in%20endogamous%20populations%20using%20identity-by-descent&rft.jtitle=PLoS%20computational%20biology&rft.au=Finke,%20Kelly&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=e1008638&rft.epage=e1008638&rft.pages=e1008638-e1008638&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008638&rft_dat=%3Cproquest_plos_%3E2494281088%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501881658&rft_id=info:pmid/33635861&rft_doaj_id=oai_doaj_org_article_d24f8ecd506c42678b641f010b0c029d&rfr_iscdi=true