Generating functional protein variants with variational autoencoders
The vast expansion of protein sequence databases provides an opportunity for new protein design approaches which seek to learn the sequence-function relationship directly from natural sequence variation. Deep generative models trained on protein sequence data have been shown to learn biologically me...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-02, Vol.17 (2), p.e1008736-e1008736 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008736 |
---|---|
container_issue | 2 |
container_start_page | e1008736 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Hawkins-Hooker, Alex Depardieu, Florence Baur, Sebastien Couairon, Guillaume Chen, Arthur Bikard, David |
description | The vast expansion of protein sequence databases provides an opportunity for new protein design approaches which seek to learn the sequence-function relationship directly from natural sequence variation. Deep generative models trained on protein sequence data have been shown to learn biologically meaningful representations helpful for a variety of downstream tasks, but their potential for direct use in the design of novel proteins remains largely unexplored. Here we show that variational autoencoders trained on a dataset of almost 70000 luciferase-like oxidoreductases can be used to generate novel, functional variants of the luxA bacterial luciferase. We propose separate VAE models to work with aligned sequence input (MSA VAE) and raw sequence input (AR-VAE), and offer evidence that while both are able to reproduce patterns of amino acid usage characteristic of the family, the MSA VAE is better able to capture long-distance dependencies reflecting the influence of 3D structure. To confirm the practical utility of the models, we used them to generate variants of luxA whose luminescence activity was validated experimentally. We further showed that conditional variants of both models could be used to increase the solubility of luxA without disrupting function. Altogether 6/12 of the variants generated using the unconditional AR-VAE and 9/11 generated using the unconditional MSA VAE retained measurable luminescence, together with all 23 of the less distant variants generated by conditional versions of the models; the most distant functional variant contained 35 differences relative to the nearest training set sequence. These results demonstrate the feasibility of using deep generative models to explore the space of possible protein sequences and generate useful variants, providing a method complementary to rational design and directed evolution approaches. |
doi_str_mv | 10.1371/journal.pcbi.1008736 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2501881472</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ccbb1d5f2fab42edb2423c43e84cf1d1</doaj_id><sourcerecordid>2494279633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c615t-775519c459c94e01a50d979cb64316917ac6a0c01f487db64cada34d395a678f3</originalsourceid><addsrcrecordid>eNptUktv1DAQjhCIlsI_QLASFy5Z7PgVX5CqAm2llbjA2ZrYzq5XWTvYziL-PV6SVm3FyePx9_CMvqp6i9EaE4E_7cMUPQzrUXdujRFqBeHPqnPMGKkFYe3zB_VZ9SqlPUKllPxldUYILyVvz6sv19bbCNn57aqfvM4uFNHVGEO2zq-OEB34nFa_Xd7NtwUBUw7W62BsTK-rFz0Myb5Zzovq57evP65u6s3369ury02tOWa5FoIxLDVlUktqEQaGjBRSd5wSzCUWoDkgjXBPW2FKV4MBQg2RDLhoe3JRvZ91xyEktSwgqYYh3LaYiqYgbmeECbBXY3QHiH9UAKf-NULcKojZ6cEqrbsOG9Y3PXS0saZraEM0JbaluscGF63Pi9vUHazR1ucIwyPRxy_e7dQ2HJWQlGMhi0A9C-ye0G4uN2qElO0UFSINJ5I0x5Phx8Uwhl-TTVkdXNJ2GMDbMJU5qaSNkJyQAv3wBPr_bdAZpWNIKdr-_hcYqVOI7ljqFCK1hKjQ3j0c_J50lxryF-AJxfQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501881472</pqid></control><display><type>article</type><title>Generating functional protein variants with variational autoencoders</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hawkins-Hooker, Alex ; Depardieu, Florence ; Baur, Sebastien ; Couairon, Guillaume ; Chen, Arthur ; Bikard, David</creator><contributor>Orengo, Christine A.</contributor><creatorcontrib>Hawkins-Hooker, Alex ; Depardieu, Florence ; Baur, Sebastien ; Couairon, Guillaume ; Chen, Arthur ; Bikard, David ; Orengo, Christine A.</creatorcontrib><description>The vast expansion of protein sequence databases provides an opportunity for new protein design approaches which seek to learn the sequence-function relationship directly from natural sequence variation. Deep generative models trained on protein sequence data have been shown to learn biologically meaningful representations helpful for a variety of downstream tasks, but their potential for direct use in the design of novel proteins remains largely unexplored. Here we show that variational autoencoders trained on a dataset of almost 70000 luciferase-like oxidoreductases can be used to generate novel, functional variants of the luxA bacterial luciferase. We propose separate VAE models to work with aligned sequence input (MSA VAE) and raw sequence input (AR-VAE), and offer evidence that while both are able to reproduce patterns of amino acid usage characteristic of the family, the MSA VAE is better able to capture long-distance dependencies reflecting the influence of 3D structure. To confirm the practical utility of the models, we used them to generate variants of luxA whose luminescence activity was validated experimentally. We further showed that conditional variants of both models could be used to increase the solubility of luxA without disrupting function. Altogether 6/12 of the variants generated using the unconditional AR-VAE and 9/11 generated using the unconditional MSA VAE retained measurable luminescence, together with all 23 of the less distant variants generated by conditional versions of the models; the most distant functional variant contained 35 differences relative to the nearest training set sequence. These results demonstrate the feasibility of using deep generative models to explore the space of possible protein sequences and generate useful variants, providing a method complementary to rational design and directed evolution approaches.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008736</identifier><identifier>PMID: 33635868</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amino acid sequence ; Amino acids ; Artificial Intelligence ; Biology and Life Sciences ; Biotechnology ; Computational Biology - methods ; Computer Science ; Computer Simulation ; Datasets ; Deep learning ; Engineering ; Escherichia coli - genetics ; Homology ; Life Sciences ; Machine Learning ; Modelling ; Mutation ; Neural Networks, Computer ; Oxidoreductases - chemistry ; Photorhabdus ; Physical Sciences ; Predictions ; Predictive control ; Protein structure ; Proteins ; Proteins - chemistry ; Proteins - physiology ; Recombinant Proteins - chemistry ; Reproducibility of Results ; Research and Analysis Methods ; Secondary structure ; Solubility</subject><ispartof>PLoS computational biology, 2021-02, Vol.17 (2), p.e1008736-e1008736</ispartof><rights>2021 Hawkins-Hooker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2021 Hawkins-Hooker et al 2021 Hawkins-Hooker et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c615t-775519c459c94e01a50d979cb64316917ac6a0c01f487db64cada34d395a678f3</citedby><cites>FETCH-LOGICAL-c615t-775519c459c94e01a50d979cb64316917ac6a0c01f487db64cada34d395a678f3</cites><orcidid>0000-0003-1228-3039 ; 0000-0002-2680-0589 ; 0000-0002-5729-1211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946179/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946179/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33635868$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://pasteur.hal.science/pasteur-03263932$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Orengo, Christine A.</contributor><creatorcontrib>Hawkins-Hooker, Alex</creatorcontrib><creatorcontrib>Depardieu, Florence</creatorcontrib><creatorcontrib>Baur, Sebastien</creatorcontrib><creatorcontrib>Couairon, Guillaume</creatorcontrib><creatorcontrib>Chen, Arthur</creatorcontrib><creatorcontrib>Bikard, David</creatorcontrib><title>Generating functional protein variants with variational autoencoders</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The vast expansion of protein sequence databases provides an opportunity for new protein design approaches which seek to learn the sequence-function relationship directly from natural sequence variation. Deep generative models trained on protein sequence data have been shown to learn biologically meaningful representations helpful for a variety of downstream tasks, but their potential for direct use in the design of novel proteins remains largely unexplored. Here we show that variational autoencoders trained on a dataset of almost 70000 luciferase-like oxidoreductases can be used to generate novel, functional variants of the luxA bacterial luciferase. We propose separate VAE models to work with aligned sequence input (MSA VAE) and raw sequence input (AR-VAE), and offer evidence that while both are able to reproduce patterns of amino acid usage characteristic of the family, the MSA VAE is better able to capture long-distance dependencies reflecting the influence of 3D structure. To confirm the practical utility of the models, we used them to generate variants of luxA whose luminescence activity was validated experimentally. We further showed that conditional variants of both models could be used to increase the solubility of luxA without disrupting function. Altogether 6/12 of the variants generated using the unconditional AR-VAE and 9/11 generated using the unconditional MSA VAE retained measurable luminescence, together with all 23 of the less distant variants generated by conditional versions of the models; the most distant functional variant contained 35 differences relative to the nearest training set sequence. These results demonstrate the feasibility of using deep generative models to explore the space of possible protein sequences and generate useful variants, providing a method complementary to rational design and directed evolution approaches.</description><subject>Algorithms</subject><subject>Amino acid sequence</subject><subject>Amino acids</subject><subject>Artificial Intelligence</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Computational Biology - methods</subject><subject>Computer Science</subject><subject>Computer Simulation</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Engineering</subject><subject>Escherichia coli - genetics</subject><subject>Homology</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Modelling</subject><subject>Mutation</subject><subject>Neural Networks, Computer</subject><subject>Oxidoreductases - chemistry</subject><subject>Photorhabdus</subject><subject>Physical Sciences</subject><subject>Predictions</subject><subject>Predictive control</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Proteins - physiology</subject><subject>Recombinant Proteins - chemistry</subject><subject>Reproducibility of Results</subject><subject>Research and Analysis Methods</subject><subject>Secondary structure</subject><subject>Solubility</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUktv1DAQjhCIlsI_QLASFy5Z7PgVX5CqAm2llbjA2ZrYzq5XWTvYziL-PV6SVm3FyePx9_CMvqp6i9EaE4E_7cMUPQzrUXdujRFqBeHPqnPMGKkFYe3zB_VZ9SqlPUKllPxldUYILyVvz6sv19bbCNn57aqfvM4uFNHVGEO2zq-OEB34nFa_Xd7NtwUBUw7W62BsTK-rFz0Myb5Zzovq57evP65u6s3369ury02tOWa5FoIxLDVlUktqEQaGjBRSd5wSzCUWoDkgjXBPW2FKV4MBQg2RDLhoe3JRvZ91xyEktSwgqYYh3LaYiqYgbmeECbBXY3QHiH9UAKf-NULcKojZ6cEqrbsOG9Y3PXS0saZraEM0JbaluscGF63Pi9vUHazR1ucIwyPRxy_e7dQ2HJWQlGMhi0A9C-ye0G4uN2qElO0UFSINJ5I0x5Phx8Uwhl-TTVkdXNJ2GMDbMJU5qaSNkJyQAv3wBPr_bdAZpWNIKdr-_hcYqVOI7ljqFCK1hKjQ3j0c_J50lxryF-AJxfQ</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Hawkins-Hooker, Alex</creator><creator>Depardieu, Florence</creator><creator>Baur, Sebastien</creator><creator>Couairon, Guillaume</creator><creator>Chen, Arthur</creator><creator>Bikard, David</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1228-3039</orcidid><orcidid>https://orcid.org/0000-0002-2680-0589</orcidid><orcidid>https://orcid.org/0000-0002-5729-1211</orcidid></search><sort><creationdate>20210201</creationdate><title>Generating functional protein variants with variational autoencoders</title><author>Hawkins-Hooker, Alex ; Depardieu, Florence ; Baur, Sebastien ; Couairon, Guillaume ; Chen, Arthur ; Bikard, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c615t-775519c459c94e01a50d979cb64316917ac6a0c01f487db64cada34d395a678f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Amino acid sequence</topic><topic>Amino acids</topic><topic>Artificial Intelligence</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Computational Biology - methods</topic><topic>Computer Science</topic><topic>Computer Simulation</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Engineering</topic><topic>Escherichia coli - genetics</topic><topic>Homology</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Modelling</topic><topic>Mutation</topic><topic>Neural Networks, Computer</topic><topic>Oxidoreductases - chemistry</topic><topic>Photorhabdus</topic><topic>Physical Sciences</topic><topic>Predictions</topic><topic>Predictive control</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Proteins - physiology</topic><topic>Recombinant Proteins - chemistry</topic><topic>Reproducibility of Results</topic><topic>Research and Analysis Methods</topic><topic>Secondary structure</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hawkins-Hooker, Alex</creatorcontrib><creatorcontrib>Depardieu, Florence</creatorcontrib><creatorcontrib>Baur, Sebastien</creatorcontrib><creatorcontrib>Couairon, Guillaume</creatorcontrib><creatorcontrib>Chen, Arthur</creatorcontrib><creatorcontrib>Bikard, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hawkins-Hooker, Alex</au><au>Depardieu, Florence</au><au>Baur, Sebastien</au><au>Couairon, Guillaume</au><au>Chen, Arthur</au><au>Bikard, David</au><au>Orengo, Christine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generating functional protein variants with variational autoencoders</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>e1008736</spage><epage>e1008736</epage><pages>e1008736-e1008736</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The vast expansion of protein sequence databases provides an opportunity for new protein design approaches which seek to learn the sequence-function relationship directly from natural sequence variation. Deep generative models trained on protein sequence data have been shown to learn biologically meaningful representations helpful for a variety of downstream tasks, but their potential for direct use in the design of novel proteins remains largely unexplored. Here we show that variational autoencoders trained on a dataset of almost 70000 luciferase-like oxidoreductases can be used to generate novel, functional variants of the luxA bacterial luciferase. We propose separate VAE models to work with aligned sequence input (MSA VAE) and raw sequence input (AR-VAE), and offer evidence that while both are able to reproduce patterns of amino acid usage characteristic of the family, the MSA VAE is better able to capture long-distance dependencies reflecting the influence of 3D structure. To confirm the practical utility of the models, we used them to generate variants of luxA whose luminescence activity was validated experimentally. We further showed that conditional variants of both models could be used to increase the solubility of luxA without disrupting function. Altogether 6/12 of the variants generated using the unconditional AR-VAE and 9/11 generated using the unconditional MSA VAE retained measurable luminescence, together with all 23 of the less distant variants generated by conditional versions of the models; the most distant functional variant contained 35 differences relative to the nearest training set sequence. These results demonstrate the feasibility of using deep generative models to explore the space of possible protein sequences and generate useful variants, providing a method complementary to rational design and directed evolution approaches.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33635868</pmid><doi>10.1371/journal.pcbi.1008736</doi><orcidid>https://orcid.org/0000-0003-1228-3039</orcidid><orcidid>https://orcid.org/0000-0002-2680-0589</orcidid><orcidid>https://orcid.org/0000-0002-5729-1211</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-02, Vol.17 (2), p.e1008736-e1008736 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2501881472 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Algorithms Amino acid sequence Amino acids Artificial Intelligence Biology and Life Sciences Biotechnology Computational Biology - methods Computer Science Computer Simulation Datasets Deep learning Engineering Escherichia coli - genetics Homology Life Sciences Machine Learning Modelling Mutation Neural Networks, Computer Oxidoreductases - chemistry Photorhabdus Physical Sciences Predictions Predictive control Protein structure Proteins Proteins - chemistry Proteins - physiology Recombinant Proteins - chemistry Reproducibility of Results Research and Analysis Methods Secondary structure Solubility |
title | Generating functional protein variants with variational autoencoders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generating%20functional%20protein%20variants%20with%20variational%20autoencoders&rft.jtitle=PLoS%20computational%20biology&rft.au=Hawkins-Hooker,%20Alex&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=e1008736&rft.epage=e1008736&rft.pages=e1008736-e1008736&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008736&rft_dat=%3Cproquest_plos_%3E2494279633%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501881472&rft_id=info:pmid/33635868&rft_doaj_id=oai_doaj_org_article_ccbb1d5f2fab42edb2423c43e84cf1d1&rfr_iscdi=true |