Independent component analysis recovers consistent regulatory signals from disparate datasets
The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2021-02, Vol.17 (2), p.e1008647-e1008647 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1008647 |
---|---|
container_issue | 2 |
container_start_page | e1008647 |
container_title | PLoS computational biology |
container_volume | 17 |
creator | Sastry, Anand V Hu, Alyssa Heckmann, David Poudel, Saugat Kavvas, Erol Palsson, Bernhard O |
description | The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of existing data. Here, we show that the underlying structure of the E. coli transcriptome, as determined by Independent Component Analysis (ICA), is conserved across multiple independent datasets, including both RNA-seq and microarray datasets. We subsequently combined five transcriptomics datasets into a large compendium containing over 800 expression profiles and discovered that its underlying ICA-based structure was still comparable to that of the individual datasets. With this understanding, we expanded our analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables deep analysis of disparate data to uncover new insights that were not visible in the individual datasets. |
doi_str_mv | 10.1371/journal.pcbi.1008647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2501880178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7cde387e0a6d4180812e1e476bde05ea</doaj_id><sourcerecordid>2501880178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-cb1bbab3ebca1115d4ab96cdd1121fd1a1a78e0c7ee5d530740bf821aac607273</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJC5ddPHH8sRekqmphpUpc4IissT1ZskriYCeV9t_jZdOqRVzssd-b55nxK4q3wNbAFXzahzkO2K1HZ9s1MKZlrZ4V5yAEXyku9PNH8VnxKqU9YzncyJfFGeei2lRMnBc_t4OnkfIyTKUL_RiGY4RZ-ZDaVEZy4Y5iytiQz9MRjLSbO5xCPJSp3WVmKpsY-tK3acSIE5UeJ0w0pdfFiybD9GbZL4ofN9ffr76ubr992V5d3q6cqOS0chasRcvJOgQA4Wu0G-m8B6ig8YCAShNzikh4wZmqmW10BYhOMlUpflG8P-mOXUhmmUwylWCgNQOlM2N7YviAezPGtsd4MAFb8_cixJ3BOLWuI6OcJ64VMZS-Bs00VARUK2k9MUGYtT4vr822J-_yTCJ2T0SfIkP7y-zCnVFaaylZFvi4CMTwe6Y0mb5NjroOBwpzrrvWEur8RXWmfviH-v_u6hPLxZBSpOahGGDm6Jb7LHN0i1ncktPePW7kIeneHvwPdFLBCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501880178</pqid></control><display><type>article</type><title>Independent component analysis recovers consistent regulatory signals from disparate datasets</title><source>DOAJ Directory of Open Access Journals</source><source>NCBI_PubMed Central(免费)</source><source>PLoS_OA刊</source><source>EZB Electronic Journals Library</source><creator>Sastry, Anand V ; Hu, Alyssa ; Heckmann, David ; Poudel, Saugat ; Kavvas, Erol ; Palsson, Bernhard O</creator><contributor>Patil, Kiran Raosaheb</contributor><creatorcontrib>Sastry, Anand V ; Hu, Alyssa ; Heckmann, David ; Poudel, Saugat ; Kavvas, Erol ; Palsson, Bernhard O ; Patil, Kiran Raosaheb</creatorcontrib><description>The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of existing data. Here, we show that the underlying structure of the E. coli transcriptome, as determined by Independent Component Analysis (ICA), is conserved across multiple independent datasets, including both RNA-seq and microarray datasets. We subsequently combined five transcriptomics datasets into a large compendium containing over 800 expression profiles and discovered that its underlying ICA-based structure was still comparable to that of the individual datasets. With this understanding, we expanded our analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables deep analysis of disparate data to uncover new insights that were not visible in the individual datasets.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1008647</identifier><identifier>PMID: 33529205</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine ; Antibiotics ; Biology and Life Sciences ; Datasets ; Decomposition ; Dietary supplements ; E coli ; Escherichia coli ; Gene expression ; Genes ; Genotypes ; Independent component analysis ; Noise ; Ontology ; Perturbation ; Research and Analysis Methods ; Transcription</subject><ispartof>PLoS computational biology, 2021-02, Vol.17 (2), p.e1008647-e1008647</ispartof><rights>2021 Sastry et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Sastry et al 2021 Sastry et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-cb1bbab3ebca1115d4ab96cdd1121fd1a1a78e0c7ee5d530740bf821aac607273</citedby><cites>FETCH-LOGICAL-c526t-cb1bbab3ebca1115d4ab96cdd1121fd1a1a78e0c7ee5d530740bf821aac607273</cites><orcidid>0000-0002-3732-2463 ; 0000-0003-1422-1712 ; 0000-0003-2525-0818 ; 0000-0003-0152-1580 ; 0000-0002-8293-3909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888660/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7888660/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33529205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Patil, Kiran Raosaheb</contributor><creatorcontrib>Sastry, Anand V</creatorcontrib><creatorcontrib>Hu, Alyssa</creatorcontrib><creatorcontrib>Heckmann, David</creatorcontrib><creatorcontrib>Poudel, Saugat</creatorcontrib><creatorcontrib>Kavvas, Erol</creatorcontrib><creatorcontrib>Palsson, Bernhard O</creatorcontrib><title>Independent component analysis recovers consistent regulatory signals from disparate datasets</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of existing data. Here, we show that the underlying structure of the E. coli transcriptome, as determined by Independent Component Analysis (ICA), is conserved across multiple independent datasets, including both RNA-seq and microarray datasets. We subsequently combined five transcriptomics datasets into a large compendium containing over 800 expression profiles and discovered that its underlying ICA-based structure was still comparable to that of the individual datasets. With this understanding, we expanded our analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables deep analysis of disparate data to uncover new insights that were not visible in the individual datasets.</description><subject>Adenosine</subject><subject>Antibiotics</subject><subject>Biology and Life Sciences</subject><subject>Datasets</subject><subject>Decomposition</subject><subject>Dietary supplements</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genotypes</subject><subject>Independent component analysis</subject><subject>Noise</subject><subject>Ontology</subject><subject>Perturbation</subject><subject>Research and Analysis Methods</subject><subject>Transcription</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJC5ddPHH8sRekqmphpUpc4IissT1ZskriYCeV9t_jZdOqRVzssd-b55nxK4q3wNbAFXzahzkO2K1HZ9s1MKZlrZ4V5yAEXyku9PNH8VnxKqU9YzncyJfFGeei2lRMnBc_t4OnkfIyTKUL_RiGY4RZ-ZDaVEZy4Y5iytiQz9MRjLSbO5xCPJSp3WVmKpsY-tK3acSIE5UeJ0w0pdfFiybD9GbZL4ofN9ffr76ubr992V5d3q6cqOS0chasRcvJOgQA4Wu0G-m8B6ig8YCAShNzikh4wZmqmW10BYhOMlUpflG8P-mOXUhmmUwylWCgNQOlM2N7YviAezPGtsd4MAFb8_cixJ3BOLWuI6OcJ64VMZS-Bs00VARUK2k9MUGYtT4vr822J-_yTCJ2T0SfIkP7y-zCnVFaaylZFvi4CMTwe6Y0mb5NjroOBwpzrrvWEur8RXWmfviH-v_u6hPLxZBSpOahGGDm6Jb7LHN0i1ncktPePW7kIeneHvwPdFLBCA</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Sastry, Anand V</creator><creator>Hu, Alyssa</creator><creator>Heckmann, David</creator><creator>Poudel, Saugat</creator><creator>Kavvas, Erol</creator><creator>Palsson, Bernhard O</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3732-2463</orcidid><orcidid>https://orcid.org/0000-0003-1422-1712</orcidid><orcidid>https://orcid.org/0000-0003-2525-0818</orcidid><orcidid>https://orcid.org/0000-0003-0152-1580</orcidid><orcidid>https://orcid.org/0000-0002-8293-3909</orcidid></search><sort><creationdate>20210201</creationdate><title>Independent component analysis recovers consistent regulatory signals from disparate datasets</title><author>Sastry, Anand V ; Hu, Alyssa ; Heckmann, David ; Poudel, Saugat ; Kavvas, Erol ; Palsson, Bernhard O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-cb1bbab3ebca1115d4ab96cdd1121fd1a1a78e0c7ee5d530740bf821aac607273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenosine</topic><topic>Antibiotics</topic><topic>Biology and Life Sciences</topic><topic>Datasets</topic><topic>Decomposition</topic><topic>Dietary supplements</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genotypes</topic><topic>Independent component analysis</topic><topic>Noise</topic><topic>Ontology</topic><topic>Perturbation</topic><topic>Research and Analysis Methods</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sastry, Anand V</creatorcontrib><creatorcontrib>Hu, Alyssa</creatorcontrib><creatorcontrib>Heckmann, David</creatorcontrib><creatorcontrib>Poudel, Saugat</creatorcontrib><creatorcontrib>Kavvas, Erol</creatorcontrib><creatorcontrib>Palsson, Bernhard O</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sastry, Anand V</au><au>Hu, Alyssa</au><au>Heckmann, David</au><au>Poudel, Saugat</au><au>Kavvas, Erol</au><au>Palsson, Bernhard O</au><au>Patil, Kiran Raosaheb</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent component analysis recovers consistent regulatory signals from disparate datasets</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>e1008647</spage><epage>e1008647</epage><pages>e1008647-e1008647</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The availability of bacterial transcriptomes has dramatically increased in recent years. This data deluge could result in detailed inference of underlying regulatory networks, but the diversity of experimental platforms and protocols introduces critical biases that could hinder scalable analysis of existing data. Here, we show that the underlying structure of the E. coli transcriptome, as determined by Independent Component Analysis (ICA), is conserved across multiple independent datasets, including both RNA-seq and microarray datasets. We subsequently combined five transcriptomics datasets into a large compendium containing over 800 expression profiles and discovered that its underlying ICA-based structure was still comparable to that of the individual datasets. With this understanding, we expanded our analysis to over 3,000 E. coli expression profiles and predicted three high-impact regulons that respond to oxidative stress, anaerobiosis, and antibiotic treatment. ICA thus enables deep analysis of disparate data to uncover new insights that were not visible in the individual datasets.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33529205</pmid><doi>10.1371/journal.pcbi.1008647</doi><orcidid>https://orcid.org/0000-0002-3732-2463</orcidid><orcidid>https://orcid.org/0000-0003-1422-1712</orcidid><orcidid>https://orcid.org/0000-0003-2525-0818</orcidid><orcidid>https://orcid.org/0000-0003-0152-1580</orcidid><orcidid>https://orcid.org/0000-0002-8293-3909</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2021-02, Vol.17 (2), p.e1008647-e1008647 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2501880178 |
source | DOAJ Directory of Open Access Journals; NCBI_PubMed Central(免费); PLoS_OA刊; EZB Electronic Journals Library |
subjects | Adenosine Antibiotics Biology and Life Sciences Datasets Decomposition Dietary supplements E coli Escherichia coli Gene expression Genes Genotypes Independent component analysis Noise Ontology Perturbation Research and Analysis Methods Transcription |
title | Independent component analysis recovers consistent regulatory signals from disparate datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20component%20analysis%20recovers%20consistent%20regulatory%20signals%20from%20disparate%20datasets&rft.jtitle=PLoS%20computational%20biology&rft.au=Sastry,%20Anand%20V&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=e1008647&rft.epage=e1008647&rft.pages=e1008647-e1008647&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1008647&rft_dat=%3Cproquest_plos_%3E2501880178%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501880178&rft_id=info:pmid/33529205&rft_doaj_id=oai_doaj_org_article_7cde387e0a6d4180812e1e476bde05ea&rfr_iscdi=true |