Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents
Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant sur...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2021-02, Vol.17 (2), p.e1009269-e1009269 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1009269 |
---|---|
container_issue | 2 |
container_start_page | e1009269 |
container_title | PLoS genetics |
container_volume | 17 |
creator | Tonkin-Hill, Gerry Ruybal-Pesántez, Shazia Tiedje, Kathryn E Rougeron, Virginie Duffy, Michael F Zakeri, Sedigheh Pumpaibool, Tepanata Harnyuttanakorn, Pongchai Branch, OraLee H Ruiz-Mesía, Lastenia Rask, Thomas S Prugnolle, Franck Papenfuss, Anthony T Chan, Yao-Ban Day, Karen P |
description | Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization. |
doi_str_mv | 10.1371/journal.pgen.1009269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2501878318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_151588ba69244fa6a70d04405f68ef9f</doaj_id><sourcerecordid>2494297298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-bcf1eb4fce2d11c61b1cd083d4b6d79fa03861f095e8d2ed810fedf614644de73</originalsourceid><addsrcrecordid>eNptkl1vFCEUhidGY2v1Hxgl8cabrTB8DHNjYpqqTZrohV4TBg67bGZgBGab_hd_rKy7bVrjFQd4z3M-8jbNa4LPCe3Ih21cUtDj-byGcE4w7lvRP2lOCed01THMnj6IT5oXOW8xplz23fPmhFJBseT8tPl9uYvjUnwMOt0iXYG3GTKKDpUNoElvY0I7nbwOBeUlOW2gqoqvRVcQTLQ-rFG91JwEO9AjmuO8jHpPRLmkxZQlwZ73fdR5qvplQk6Pxs861fDGl40PFWnRAOUGICATKz9AKPll86xKM7w6nmfNz8-XPy6-rq6_fbm6-HS9MrwVZTUYR2BgzkBrCTGCDMRYLKllg7Bd7zSmUhCHew7StmAlwQ6sE4QJxix09Kx5e-DOY8zquNisWo6J7CQlsiquDgob9VbNyU91XSpqr_4-xLRWOhVvRlCEEy7loEXfMua00B22mDHMnZDgeldZH4_VlmECa-qkSY-PoI9_gt-oddyprseCElwB74-AFH8tkIuafDYwjjpAXGrfrGdt37X9vu93_0j_Px07qEyKOSdw980QrPZmu8tSe7Opo9lq2puHg9wn3bmL_gE_H9hH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2501878318</pqid></control><display><type>article</type><title>Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tonkin-Hill, Gerry ; Ruybal-Pesántez, Shazia ; Tiedje, Kathryn E ; Rougeron, Virginie ; Duffy, Michael F ; Zakeri, Sedigheh ; Pumpaibool, Tepanata ; Harnyuttanakorn, Pongchai ; Branch, OraLee H ; Ruiz-Mesía, Lastenia ; Rask, Thomas S ; Prugnolle, Franck ; Papenfuss, Anthony T ; Chan, Yao-Ban ; Day, Karen P</creator><contributor>Buchrieser, Carmen</contributor><creatorcontrib>Tonkin-Hill, Gerry ; Ruybal-Pesántez, Shazia ; Tiedje, Kathryn E ; Rougeron, Virginie ; Duffy, Michael F ; Zakeri, Sedigheh ; Pumpaibool, Tepanata ; Harnyuttanakorn, Pongchai ; Branch, OraLee H ; Ruiz-Mesía, Lastenia ; Rask, Thomas S ; Prugnolle, Franck ; Papenfuss, Anthony T ; Chan, Yao-Ban ; Day, Karen P ; Buchrieser, Carmen</creatorcontrib><description>Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1009269</identifier><identifier>PMID: 33630855</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antigenic Variation ; Antigens ; Antigens, Protozoan - genetics ; Biology and Life Sciences ; Datasets ; Earth Sciences ; Ecology and Environmental Sciences ; Erythrocyte membrane protein 1 ; Erythrocytes ; Evolution, Molecular ; Gabon ; Genes ; Genomes ; Ghana ; Humans ; Malaria, Falciparum - epidemiology ; Malaria, Falciparum - parasitology ; Markov Chains ; Medicine and Health Sciences ; Membrane proteins ; Models, Statistical ; Pathogens ; People and Places ; Plasmodium falciparum ; Plasmodium falciparum - genetics ; Population ; Population structure ; Protein Domains ; Protozoan Proteins - genetics ; Protozoan Proteins - metabolism ; Recombination ; Research and Analysis Methods ; Single-nucleotide polymorphism ; Surveillance ; Uganda ; Var gene ; Whole genome sequencing</subject><ispartof>PLoS genetics, 2021-02, Vol.17 (2), p.e1009269-e1009269</ispartof><rights>2021 Tonkin-Hill et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Tonkin-Hill et al 2021 Tonkin-Hill et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-bcf1eb4fce2d11c61b1cd083d4b6d79fa03861f095e8d2ed810fedf614644de73</citedby><cites>FETCH-LOGICAL-c526t-bcf1eb4fce2d11c61b1cd083d4b6d79fa03861f095e8d2ed810fedf614644de73</cites><orcidid>0000-0002-9385-5416 ; 0000-0001-5635-4033 ; 0000-0001-9017-6656 ; 0000-0001-8519-1253 ; 0000-0003-4397-2224 ; 0000-0003-0794-2597 ; 0000-0002-6115-6135 ; 0000-0002-1102-8506 ; 0000-0002-8425-8775 ; 0000-0002-6720-6906 ; 0000-0003-3305-0533 ; 0000-0002-0495-179X ; 0000-0001-5873-5681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906310/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906310/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33630855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Buchrieser, Carmen</contributor><creatorcontrib>Tonkin-Hill, Gerry</creatorcontrib><creatorcontrib>Ruybal-Pesántez, Shazia</creatorcontrib><creatorcontrib>Tiedje, Kathryn E</creatorcontrib><creatorcontrib>Rougeron, Virginie</creatorcontrib><creatorcontrib>Duffy, Michael F</creatorcontrib><creatorcontrib>Zakeri, Sedigheh</creatorcontrib><creatorcontrib>Pumpaibool, Tepanata</creatorcontrib><creatorcontrib>Harnyuttanakorn, Pongchai</creatorcontrib><creatorcontrib>Branch, OraLee H</creatorcontrib><creatorcontrib>Ruiz-Mesía, Lastenia</creatorcontrib><creatorcontrib>Rask, Thomas S</creatorcontrib><creatorcontrib>Prugnolle, Franck</creatorcontrib><creatorcontrib>Papenfuss, Anthony T</creatorcontrib><creatorcontrib>Chan, Yao-Ban</creatorcontrib><creatorcontrib>Day, Karen P</creatorcontrib><title>Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.</description><subject>Antigenic Variation</subject><subject>Antigens</subject><subject>Antigens, Protozoan - genetics</subject><subject>Biology and Life Sciences</subject><subject>Datasets</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Erythrocyte membrane protein 1</subject><subject>Erythrocytes</subject><subject>Evolution, Molecular</subject><subject>Gabon</subject><subject>Genes</subject><subject>Genomes</subject><subject>Ghana</subject><subject>Humans</subject><subject>Malaria, Falciparum - epidemiology</subject><subject>Malaria, Falciparum - parasitology</subject><subject>Markov Chains</subject><subject>Medicine and Health Sciences</subject><subject>Membrane proteins</subject><subject>Models, Statistical</subject><subject>Pathogens</subject><subject>People and Places</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium falciparum - genetics</subject><subject>Population</subject><subject>Population structure</subject><subject>Protein Domains</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - metabolism</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>Single-nucleotide polymorphism</subject><subject>Surveillance</subject><subject>Uganda</subject><subject>Var gene</subject><subject>Whole genome sequencing</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptkl1vFCEUhidGY2v1Hxgl8cabrTB8DHNjYpqqTZrohV4TBg67bGZgBGab_hd_rKy7bVrjFQd4z3M-8jbNa4LPCe3Ih21cUtDj-byGcE4w7lvRP2lOCed01THMnj6IT5oXOW8xplz23fPmhFJBseT8tPl9uYvjUnwMOt0iXYG3GTKKDpUNoElvY0I7nbwOBeUlOW2gqoqvRVcQTLQ-rFG91JwEO9AjmuO8jHpPRLmkxZQlwZ73fdR5qvplQk6Pxs861fDGl40PFWnRAOUGICATKz9AKPll86xKM7w6nmfNz8-XPy6-rq6_fbm6-HS9MrwVZTUYR2BgzkBrCTGCDMRYLKllg7Bd7zSmUhCHew7StmAlwQ6sE4QJxix09Kx5e-DOY8zquNisWo6J7CQlsiquDgob9VbNyU91XSpqr_4-xLRWOhVvRlCEEy7loEXfMua00B22mDHMnZDgeldZH4_VlmECa-qkSY-PoI9_gt-oddyprseCElwB74-AFH8tkIuafDYwjjpAXGrfrGdt37X9vu93_0j_Px07qEyKOSdw980QrPZmu8tSe7Opo9lq2puHg9wn3bmL_gE_H9hH</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Tonkin-Hill, Gerry</creator><creator>Ruybal-Pesántez, Shazia</creator><creator>Tiedje, Kathryn E</creator><creator>Rougeron, Virginie</creator><creator>Duffy, Michael F</creator><creator>Zakeri, Sedigheh</creator><creator>Pumpaibool, Tepanata</creator><creator>Harnyuttanakorn, Pongchai</creator><creator>Branch, OraLee H</creator><creator>Ruiz-Mesía, Lastenia</creator><creator>Rask, Thomas S</creator><creator>Prugnolle, Franck</creator><creator>Papenfuss, Anthony T</creator><creator>Chan, Yao-Ban</creator><creator>Day, Karen P</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9385-5416</orcidid><orcidid>https://orcid.org/0000-0001-5635-4033</orcidid><orcidid>https://orcid.org/0000-0001-9017-6656</orcidid><orcidid>https://orcid.org/0000-0001-8519-1253</orcidid><orcidid>https://orcid.org/0000-0003-4397-2224</orcidid><orcidid>https://orcid.org/0000-0003-0794-2597</orcidid><orcidid>https://orcid.org/0000-0002-6115-6135</orcidid><orcidid>https://orcid.org/0000-0002-1102-8506</orcidid><orcidid>https://orcid.org/0000-0002-8425-8775</orcidid><orcidid>https://orcid.org/0000-0002-6720-6906</orcidid><orcidid>https://orcid.org/0000-0003-3305-0533</orcidid><orcidid>https://orcid.org/0000-0002-0495-179X</orcidid><orcidid>https://orcid.org/0000-0001-5873-5681</orcidid></search><sort><creationdate>20210201</creationdate><title>Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents</title><author>Tonkin-Hill, Gerry ; Ruybal-Pesántez, Shazia ; Tiedje, Kathryn E ; Rougeron, Virginie ; Duffy, Michael F ; Zakeri, Sedigheh ; Pumpaibool, Tepanata ; Harnyuttanakorn, Pongchai ; Branch, OraLee H ; Ruiz-Mesía, Lastenia ; Rask, Thomas S ; Prugnolle, Franck ; Papenfuss, Anthony T ; Chan, Yao-Ban ; Day, Karen P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-bcf1eb4fce2d11c61b1cd083d4b6d79fa03861f095e8d2ed810fedf614644de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Antigenic Variation</topic><topic>Antigens</topic><topic>Antigens, Protozoan - genetics</topic><topic>Biology and Life Sciences</topic><topic>Datasets</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Erythrocyte membrane protein 1</topic><topic>Erythrocytes</topic><topic>Evolution, Molecular</topic><topic>Gabon</topic><topic>Genes</topic><topic>Genomes</topic><topic>Ghana</topic><topic>Humans</topic><topic>Malaria, Falciparum - epidemiology</topic><topic>Malaria, Falciparum - parasitology</topic><topic>Markov Chains</topic><topic>Medicine and Health Sciences</topic><topic>Membrane proteins</topic><topic>Models, Statistical</topic><topic>Pathogens</topic><topic>People and Places</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium falciparum - genetics</topic><topic>Population</topic><topic>Population structure</topic><topic>Protein Domains</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - metabolism</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>Single-nucleotide polymorphism</topic><topic>Surveillance</topic><topic>Uganda</topic><topic>Var gene</topic><topic>Whole genome sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tonkin-Hill, Gerry</creatorcontrib><creatorcontrib>Ruybal-Pesántez, Shazia</creatorcontrib><creatorcontrib>Tiedje, Kathryn E</creatorcontrib><creatorcontrib>Rougeron, Virginie</creatorcontrib><creatorcontrib>Duffy, Michael F</creatorcontrib><creatorcontrib>Zakeri, Sedigheh</creatorcontrib><creatorcontrib>Pumpaibool, Tepanata</creatorcontrib><creatorcontrib>Harnyuttanakorn, Pongchai</creatorcontrib><creatorcontrib>Branch, OraLee H</creatorcontrib><creatorcontrib>Ruiz-Mesía, Lastenia</creatorcontrib><creatorcontrib>Rask, Thomas S</creatorcontrib><creatorcontrib>Prugnolle, Franck</creatorcontrib><creatorcontrib>Papenfuss, Anthony T</creatorcontrib><creatorcontrib>Chan, Yao-Ban</creatorcontrib><creatorcontrib>Day, Karen P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tonkin-Hill, Gerry</au><au>Ruybal-Pesántez, Shazia</au><au>Tiedje, Kathryn E</au><au>Rougeron, Virginie</au><au>Duffy, Michael F</au><au>Zakeri, Sedigheh</au><au>Pumpaibool, Tepanata</au><au>Harnyuttanakorn, Pongchai</au><au>Branch, OraLee H</au><au>Ruiz-Mesía, Lastenia</au><au>Rask, Thomas S</au><au>Prugnolle, Franck</au><au>Papenfuss, Anthony T</au><au>Chan, Yao-Ban</au><au>Day, Karen P</au><au>Buchrieser, Carmen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2021-02-01</date><risdate>2021</risdate><volume>17</volume><issue>2</issue><spage>e1009269</spage><epage>e1009269</epage><pages>e1009269-e1009269</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33630855</pmid><doi>10.1371/journal.pgen.1009269</doi><orcidid>https://orcid.org/0000-0002-9385-5416</orcidid><orcidid>https://orcid.org/0000-0001-5635-4033</orcidid><orcidid>https://orcid.org/0000-0001-9017-6656</orcidid><orcidid>https://orcid.org/0000-0001-8519-1253</orcidid><orcidid>https://orcid.org/0000-0003-4397-2224</orcidid><orcidid>https://orcid.org/0000-0003-0794-2597</orcidid><orcidid>https://orcid.org/0000-0002-6115-6135</orcidid><orcidid>https://orcid.org/0000-0002-1102-8506</orcidid><orcidid>https://orcid.org/0000-0002-8425-8775</orcidid><orcidid>https://orcid.org/0000-0002-6720-6906</orcidid><orcidid>https://orcid.org/0000-0003-3305-0533</orcidid><orcidid>https://orcid.org/0000-0002-0495-179X</orcidid><orcidid>https://orcid.org/0000-0001-5873-5681</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2021-02, Vol.17 (2), p.e1009269-e1009269 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2501878318 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antigenic Variation Antigens Antigens, Protozoan - genetics Biology and Life Sciences Datasets Earth Sciences Ecology and Environmental Sciences Erythrocyte membrane protein 1 Erythrocytes Evolution, Molecular Gabon Genes Genomes Ghana Humans Malaria, Falciparum - epidemiology Malaria, Falciparum - parasitology Markov Chains Medicine and Health Sciences Membrane proteins Models, Statistical Pathogens People and Places Plasmodium falciparum Plasmodium falciparum - genetics Population Population structure Protein Domains Protozoan Proteins - genetics Protozoan Proteins - metabolism Recombination Research and Analysis Methods Single-nucleotide polymorphism Surveillance Uganda Var gene Whole genome sequencing |
title | Evolutionary analyses of the major variant surface antigen-encoding genes reveal population structure of Plasmodium falciparum within and between continents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A41%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20analyses%20of%20the%20major%20variant%20surface%20antigen-encoding%20genes%20reveal%20population%20structure%20of%20Plasmodium%20falciparum%20within%20and%20between%20continents&rft.jtitle=PLoS%20genetics&rft.au=Tonkin-Hill,%20Gerry&rft.date=2021-02-01&rft.volume=17&rft.issue=2&rft.spage=e1009269&rft.epage=e1009269&rft.pages=e1009269-e1009269&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1009269&rft_dat=%3Cproquest_plos_%3E2494297298%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2501878318&rft_id=info:pmid/33630855&rft_doaj_id=oai_doaj_org_article_151588ba69244fa6a70d04405f68ef9f&rfr_iscdi=true |