Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model

Mapping of sentinel lymph nodes (SLNs) can enable less invasive surgery. However, mapping is challenging for cancers of difficult-to-access visceral organs, such as the gallbladder, because the standard method using radioisotopes (RIs) requires preoperative tracer injection. Indocyanine green (ICG)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0248531
Hauptverfasser: Mihara, Kisyo, Matsuda, Sachiko, Nakamura, Yuki, Aiura, Koichi, Kuwahata, Akihiro, Chikaki, Shinichi, Sekino, Masaki, Kusakabe, Moriaki, Suzuki, Shunichi, Fuchimoto, Daiichiro, Onishi, Akira, Kuramoto, Junko, Kameyama, Kaori, Itano, Osamu, Yagi, Hiroshi, Abe, Yuta, Kitago, Minoru, Shinoda, Masahiro, Kitagawa, Yuko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e0248531
container_title PloS one
container_volume 16
creator Mihara, Kisyo
Matsuda, Sachiko
Nakamura, Yuki
Aiura, Koichi
Kuwahata, Akihiro
Chikaki, Shinichi
Sekino, Masaki
Kusakabe, Moriaki
Suzuki, Shunichi
Fuchimoto, Daiichiro
Onishi, Akira
Kuramoto, Junko
Kameyama, Kaori
Itano, Osamu
Yagi, Hiroshi
Abe, Yuta
Kitago, Minoru
Shinoda, Masahiro
Kitagawa, Yuko
description Mapping of sentinel lymph nodes (SLNs) can enable less invasive surgery. However, mapping is challenging for cancers of difficult-to-access visceral organs, such as the gallbladder, because the standard method using radioisotopes (RIs) requires preoperative tracer injection. Indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) have also been used as alternative tracers. In this study, we modified a previously reported magnetic probe for laparoscopic use and evaluated the feasibility of detecting SLNs of the gallbladder using a laparoscopic dual tracer method by injecting ICG and SPIO into five swine and one cancer-bearing swine. The laparoscopic probe identified SPIO nanoparticles in the nodes of 4/5 swine in situ, the magnetic field counts were 2.5-15.9 μT, and fluorescence was detected in SLNs in all five swine. ICG showed a visual lymph flow map, and SPIO more accurately identified each SLN with a measurable magnetic field quite similar to the RI. We then developed an advanced gallbladder cancer model with lymph node metastasis using recombination activating gene 2-knockout swine. We identified an SLN in the laparoscopic investigation, and the magnetic field count was 3.5 μT. The SLN was histologically determined to be one of the two metastatic lymph nodes. In conclusion, detecting the SLNs of gallbladder cancer in situ using a dual tracer laparoscopic technique with ICG and SPIO was feasible in a swine model.
doi_str_mv 10.1371/journal.pone.0248531
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2500367538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A654635469</galeid><doaj_id>oai_doaj_org_article_41b3dec02a4c45c595f320e33161c1c4</doaj_id><sourcerecordid>A654635469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c820t-6517d2710a7c53fc996cd66d170d5af4f43c649b6b407640c49e0639e49b5e0b3</originalsourceid><addsrcrecordid>eNqNk2tr2zAUhs3YWLtu_2BsgsFgH5JJ1sXxl0EpuwQKhd2-CkU6ThRkyZPstvkp-7dTGrfEsMEwQubofR_LL-cUxUuC54RW5P02DNErN--Chzku2YJT8qg4JTUtZ6LE9PHR-0nxLKUtxpwuhHhanFBaYc7q8rT4vfR9VKGDqHp7DcipTsWQdOisRgZ60L0NHoUGJfC99eCQ27XdBvlgIKEb22-Q9SbonfL5FK0jgEfKG5SGDM0w1aq1hz7jbNyTbq2BbEEKpZs7h3Ju5ZQxEJFWXuetzWz3vHjSKJfgxbifFT8-ffx-8WV2efV5eXF-OdOLEvczwUllyopgVWlOG13XQhshDKmw4aphDaNasHolVgxXgmHNasCC1pBrHPCKnhWvD9zOhSTHVJMsOcZUVDmxrFgeFCaoreyibVXcyaCsvCuEuJYq5h90IBlZUQMal4ppxjWveUNLDJQSQTTRLLM-jF8bVi0YDfv43QQ6PfF2I9fhWlY1J3XJM-DNCIjh1wCp_8eVR1VOF6T1Tcgw3dqk5bngTNC86qya_0WVHwOt1bmvGpvrE8O7iSFrerjt12pISS6_ff1_7dXPqfbtkXYDyvWbFNyw7700FbKDUOcmTRGah-QIlvuxuE9D7sdCjmORba-OU38w3c8B_QMElQsM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2500367538</pqid></control><display><type>article</type><title>Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model</title><source>Open Access: PubMed Central</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Free Full-Text Journals in Chemistry</source><creator>Mihara, Kisyo ; Matsuda, Sachiko ; Nakamura, Yuki ; Aiura, Koichi ; Kuwahata, Akihiro ; Chikaki, Shinichi ; Sekino, Masaki ; Kusakabe, Moriaki ; Suzuki, Shunichi ; Fuchimoto, Daiichiro ; Onishi, Akira ; Kuramoto, Junko ; Kameyama, Kaori ; Itano, Osamu ; Yagi, Hiroshi ; Abe, Yuta ; Kitago, Minoru ; Shinoda, Masahiro ; Kitagawa, Yuko</creator><creatorcontrib>Mihara, Kisyo ; Matsuda, Sachiko ; Nakamura, Yuki ; Aiura, Koichi ; Kuwahata, Akihiro ; Chikaki, Shinichi ; Sekino, Masaki ; Kusakabe, Moriaki ; Suzuki, Shunichi ; Fuchimoto, Daiichiro ; Onishi, Akira ; Kuramoto, Junko ; Kameyama, Kaori ; Itano, Osamu ; Yagi, Hiroshi ; Abe, Yuta ; Kitago, Minoru ; Shinoda, Masahiro ; Kitagawa, Yuko</creatorcontrib><description>Mapping of sentinel lymph nodes (SLNs) can enable less invasive surgery. However, mapping is challenging for cancers of difficult-to-access visceral organs, such as the gallbladder, because the standard method using radioisotopes (RIs) requires preoperative tracer injection. Indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) have also been used as alternative tracers. In this study, we modified a previously reported magnetic probe for laparoscopic use and evaluated the feasibility of detecting SLNs of the gallbladder using a laparoscopic dual tracer method by injecting ICG and SPIO into five swine and one cancer-bearing swine. The laparoscopic probe identified SPIO nanoparticles in the nodes of 4/5 swine in situ, the magnetic field counts were 2.5-15.9 μT, and fluorescence was detected in SLNs in all five swine. ICG showed a visual lymph flow map, and SPIO more accurately identified each SLN with a measurable magnetic field quite similar to the RI. We then developed an advanced gallbladder cancer model with lymph node metastasis using recombination activating gene 2-knockout swine. We identified an SLN in the laparoscopic investigation, and the magnetic field count was 3.5 μT. The SLN was histologically determined to be one of the two metastatic lymph nodes. In conclusion, detecting the SLNs of gallbladder cancer in situ using a dual tracer laparoscopic technique with ICG and SPIO was feasible in a swine model.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0248531</identifier><identifier>PMID: 33705492</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural research ; Agriculture ; Animal sciences ; Animals ; Biology and Life Sciences ; Biotechnology ; Breast cancer ; Cell culture ; Contrast media ; Data analysis ; Diagnosis ; Editing ; Endoscopy ; Engineering ; Engineering schools ; Epidermal growth factor ; Food ; Gallbladder ; Gallbladder cancer ; Gastrointestinal cancer ; Graduate schools ; Graduate studies ; Growth factors ; Immunodeficiency ; Invasiveness ; Iron oxides ; Laparoscopic surgery ; Laparoscopy ; Livestock ; Lymph nodes ; Lymphatic system ; Magnetic probes ; Medicine ; Medicine and Health Sciences ; Metastases ; Metastasis ; Methodology ; Methods ; Nanoparticles ; Pathology ; Potassium ; RAG2 protein ; Recombination ; Research facilities ; Sentinel lymph node biopsy ; Skin ; Skin cancer ; Supervision ; Surgery ; Swine ; Tissue culture ; Tracers ; Tumors ; Visualization</subject><ispartof>PloS one, 2021-03, Vol.16 (3), p.e0248531</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Mihara et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Mihara et al 2021 Mihara et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c820t-6517d2710a7c53fc996cd66d170d5af4f43c649b6b407640c49e0639e49b5e0b3</citedby><cites>FETCH-LOGICAL-c820t-6517d2710a7c53fc996cd66d170d5af4f43c649b6b407640c49e0639e49b5e0b3</cites><orcidid>0000-0003-4797-1149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951925/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7951925/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33705492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mihara, Kisyo</creatorcontrib><creatorcontrib>Matsuda, Sachiko</creatorcontrib><creatorcontrib>Nakamura, Yuki</creatorcontrib><creatorcontrib>Aiura, Koichi</creatorcontrib><creatorcontrib>Kuwahata, Akihiro</creatorcontrib><creatorcontrib>Chikaki, Shinichi</creatorcontrib><creatorcontrib>Sekino, Masaki</creatorcontrib><creatorcontrib>Kusakabe, Moriaki</creatorcontrib><creatorcontrib>Suzuki, Shunichi</creatorcontrib><creatorcontrib>Fuchimoto, Daiichiro</creatorcontrib><creatorcontrib>Onishi, Akira</creatorcontrib><creatorcontrib>Kuramoto, Junko</creatorcontrib><creatorcontrib>Kameyama, Kaori</creatorcontrib><creatorcontrib>Itano, Osamu</creatorcontrib><creatorcontrib>Yagi, Hiroshi</creatorcontrib><creatorcontrib>Abe, Yuta</creatorcontrib><creatorcontrib>Kitago, Minoru</creatorcontrib><creatorcontrib>Shinoda, Masahiro</creatorcontrib><creatorcontrib>Kitagawa, Yuko</creatorcontrib><title>Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Mapping of sentinel lymph nodes (SLNs) can enable less invasive surgery. However, mapping is challenging for cancers of difficult-to-access visceral organs, such as the gallbladder, because the standard method using radioisotopes (RIs) requires preoperative tracer injection. Indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) have also been used as alternative tracers. In this study, we modified a previously reported magnetic probe for laparoscopic use and evaluated the feasibility of detecting SLNs of the gallbladder using a laparoscopic dual tracer method by injecting ICG and SPIO into five swine and one cancer-bearing swine. The laparoscopic probe identified SPIO nanoparticles in the nodes of 4/5 swine in situ, the magnetic field counts were 2.5-15.9 μT, and fluorescence was detected in SLNs in all five swine. ICG showed a visual lymph flow map, and SPIO more accurately identified each SLN with a measurable magnetic field quite similar to the RI. We then developed an advanced gallbladder cancer model with lymph node metastasis using recombination activating gene 2-knockout swine. We identified an SLN in the laparoscopic investigation, and the magnetic field count was 3.5 μT. The SLN was histologically determined to be one of the two metastatic lymph nodes. In conclusion, detecting the SLNs of gallbladder cancer in situ using a dual tracer laparoscopic technique with ICG and SPIO was feasible in a swine model.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Animal sciences</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Cell culture</subject><subject>Contrast media</subject><subject>Data analysis</subject><subject>Diagnosis</subject><subject>Editing</subject><subject>Endoscopy</subject><subject>Engineering</subject><subject>Engineering schools</subject><subject>Epidermal growth factor</subject><subject>Food</subject><subject>Gallbladder</subject><subject>Gallbladder cancer</subject><subject>Gastrointestinal cancer</subject><subject>Graduate schools</subject><subject>Graduate studies</subject><subject>Growth factors</subject><subject>Immunodeficiency</subject><subject>Invasiveness</subject><subject>Iron oxides</subject><subject>Laparoscopic surgery</subject><subject>Laparoscopy</subject><subject>Livestock</subject><subject>Lymph nodes</subject><subject>Lymphatic system</subject><subject>Magnetic probes</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Metastases</subject><subject>Metastasis</subject><subject>Methodology</subject><subject>Methods</subject><subject>Nanoparticles</subject><subject>Pathology</subject><subject>Potassium</subject><subject>RAG2 protein</subject><subject>Recombination</subject><subject>Research facilities</subject><subject>Sentinel lymph node biopsy</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>Supervision</subject><subject>Surgery</subject><subject>Swine</subject><subject>Tissue culture</subject><subject>Tracers</subject><subject>Tumors</subject><subject>Visualization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2tr2zAUhs3YWLtu_2BsgsFgH5JJ1sXxl0EpuwQKhd2-CkU6ThRkyZPstvkp-7dTGrfEsMEwQubofR_LL-cUxUuC54RW5P02DNErN--Chzku2YJT8qg4JTUtZ6LE9PHR-0nxLKUtxpwuhHhanFBaYc7q8rT4vfR9VKGDqHp7DcipTsWQdOisRgZ60L0NHoUGJfC99eCQ27XdBvlgIKEb22-Q9SbonfL5FK0jgEfKG5SGDM0w1aq1hz7jbNyTbq2BbEEKpZs7h3Ju5ZQxEJFWXuetzWz3vHjSKJfgxbifFT8-ffx-8WV2efV5eXF-OdOLEvczwUllyopgVWlOG13XQhshDKmw4aphDaNasHolVgxXgmHNasCC1pBrHPCKnhWvD9zOhSTHVJMsOcZUVDmxrFgeFCaoreyibVXcyaCsvCuEuJYq5h90IBlZUQMal4ppxjWveUNLDJQSQTTRLLM-jF8bVi0YDfv43QQ6PfF2I9fhWlY1J3XJM-DNCIjh1wCp_8eVR1VOF6T1Tcgw3dqk5bngTNC86qya_0WVHwOt1bmvGpvrE8O7iSFrerjt12pISS6_ff1_7dXPqfbtkXYDyvWbFNyw7700FbKDUOcmTRGah-QIlvuxuE9D7sdCjmORba-OU38w3c8B_QMElQsM</recordid><startdate>20210311</startdate><enddate>20210311</enddate><creator>Mihara, Kisyo</creator><creator>Matsuda, Sachiko</creator><creator>Nakamura, Yuki</creator><creator>Aiura, Koichi</creator><creator>Kuwahata, Akihiro</creator><creator>Chikaki, Shinichi</creator><creator>Sekino, Masaki</creator><creator>Kusakabe, Moriaki</creator><creator>Suzuki, Shunichi</creator><creator>Fuchimoto, Daiichiro</creator><creator>Onishi, Akira</creator><creator>Kuramoto, Junko</creator><creator>Kameyama, Kaori</creator><creator>Itano, Osamu</creator><creator>Yagi, Hiroshi</creator><creator>Abe, Yuta</creator><creator>Kitago, Minoru</creator><creator>Shinoda, Masahiro</creator><creator>Kitagawa, Yuko</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4797-1149</orcidid></search><sort><creationdate>20210311</creationdate><title>Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model</title><author>Mihara, Kisyo ; Matsuda, Sachiko ; Nakamura, Yuki ; Aiura, Koichi ; Kuwahata, Akihiro ; Chikaki, Shinichi ; Sekino, Masaki ; Kusakabe, Moriaki ; Suzuki, Shunichi ; Fuchimoto, Daiichiro ; Onishi, Akira ; Kuramoto, Junko ; Kameyama, Kaori ; Itano, Osamu ; Yagi, Hiroshi ; Abe, Yuta ; Kitago, Minoru ; Shinoda, Masahiro ; Kitagawa, Yuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c820t-6517d2710a7c53fc996cd66d170d5af4f43c649b6b407640c49e0639e49b5e0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Animal sciences</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Cell culture</topic><topic>Contrast media</topic><topic>Data analysis</topic><topic>Diagnosis</topic><topic>Editing</topic><topic>Endoscopy</topic><topic>Engineering</topic><topic>Engineering schools</topic><topic>Epidermal growth factor</topic><topic>Food</topic><topic>Gallbladder</topic><topic>Gallbladder cancer</topic><topic>Gastrointestinal cancer</topic><topic>Graduate schools</topic><topic>Graduate studies</topic><topic>Growth factors</topic><topic>Immunodeficiency</topic><topic>Invasiveness</topic><topic>Iron oxides</topic><topic>Laparoscopic surgery</topic><topic>Laparoscopy</topic><topic>Livestock</topic><topic>Lymph nodes</topic><topic>Lymphatic system</topic><topic>Magnetic probes</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Metastases</topic><topic>Metastasis</topic><topic>Methodology</topic><topic>Methods</topic><topic>Nanoparticles</topic><topic>Pathology</topic><topic>Potassium</topic><topic>RAG2 protein</topic><topic>Recombination</topic><topic>Research facilities</topic><topic>Sentinel lymph node biopsy</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>Supervision</topic><topic>Surgery</topic><topic>Swine</topic><topic>Tissue culture</topic><topic>Tracers</topic><topic>Tumors</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mihara, Kisyo</creatorcontrib><creatorcontrib>Matsuda, Sachiko</creatorcontrib><creatorcontrib>Nakamura, Yuki</creatorcontrib><creatorcontrib>Aiura, Koichi</creatorcontrib><creatorcontrib>Kuwahata, Akihiro</creatorcontrib><creatorcontrib>Chikaki, Shinichi</creatorcontrib><creatorcontrib>Sekino, Masaki</creatorcontrib><creatorcontrib>Kusakabe, Moriaki</creatorcontrib><creatorcontrib>Suzuki, Shunichi</creatorcontrib><creatorcontrib>Fuchimoto, Daiichiro</creatorcontrib><creatorcontrib>Onishi, Akira</creatorcontrib><creatorcontrib>Kuramoto, Junko</creatorcontrib><creatorcontrib>Kameyama, Kaori</creatorcontrib><creatorcontrib>Itano, Osamu</creatorcontrib><creatorcontrib>Yagi, Hiroshi</creatorcontrib><creatorcontrib>Abe, Yuta</creatorcontrib><creatorcontrib>Kitago, Minoru</creatorcontrib><creatorcontrib>Shinoda, Masahiro</creatorcontrib><creatorcontrib>Kitagawa, Yuko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database (ProQuest)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>test</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mihara, Kisyo</au><au>Matsuda, Sachiko</au><au>Nakamura, Yuki</au><au>Aiura, Koichi</au><au>Kuwahata, Akihiro</au><au>Chikaki, Shinichi</au><au>Sekino, Masaki</au><au>Kusakabe, Moriaki</au><au>Suzuki, Shunichi</au><au>Fuchimoto, Daiichiro</au><au>Onishi, Akira</au><au>Kuramoto, Junko</au><au>Kameyama, Kaori</au><au>Itano, Osamu</au><au>Yagi, Hiroshi</au><au>Abe, Yuta</au><au>Kitago, Minoru</au><au>Shinoda, Masahiro</au><au>Kitagawa, Yuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-03-11</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>e0248531</spage><pages>e0248531-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Mapping of sentinel lymph nodes (SLNs) can enable less invasive surgery. However, mapping is challenging for cancers of difficult-to-access visceral organs, such as the gallbladder, because the standard method using radioisotopes (RIs) requires preoperative tracer injection. Indocyanine green (ICG) and superparamagnetic iron oxide (SPIO) have also been used as alternative tracers. In this study, we modified a previously reported magnetic probe for laparoscopic use and evaluated the feasibility of detecting SLNs of the gallbladder using a laparoscopic dual tracer method by injecting ICG and SPIO into five swine and one cancer-bearing swine. The laparoscopic probe identified SPIO nanoparticles in the nodes of 4/5 swine in situ, the magnetic field counts were 2.5-15.9 μT, and fluorescence was detected in SLNs in all five swine. ICG showed a visual lymph flow map, and SPIO more accurately identified each SLN with a measurable magnetic field quite similar to the RI. We then developed an advanced gallbladder cancer model with lymph node metastasis using recombination activating gene 2-knockout swine. We identified an SLN in the laparoscopic investigation, and the magnetic field count was 3.5 μT. The SLN was histologically determined to be one of the two metastatic lymph nodes. In conclusion, detecting the SLNs of gallbladder cancer in situ using a dual tracer laparoscopic technique with ICG and SPIO was feasible in a swine model.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33705492</pmid><doi>10.1371/journal.pone.0248531</doi><tpages>e0248531</tpages><orcidid>https://orcid.org/0000-0003-4797-1149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-03, Vol.16 (3), p.e0248531
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2500367538
source Open Access: PubMed Central; Public Library of Science; DOAJ Directory of Open Access Journals; Free E-Journal (出版社公開部分のみ); Free Full-Text Journals in Chemistry
subjects Agricultural research
Agriculture
Animal sciences
Animals
Biology and Life Sciences
Biotechnology
Breast cancer
Cell culture
Contrast media
Data analysis
Diagnosis
Editing
Endoscopy
Engineering
Engineering schools
Epidermal growth factor
Food
Gallbladder
Gallbladder cancer
Gastrointestinal cancer
Graduate schools
Graduate studies
Growth factors
Immunodeficiency
Invasiveness
Iron oxides
Laparoscopic surgery
Laparoscopy
Livestock
Lymph nodes
Lymphatic system
Magnetic probes
Medicine
Medicine and Health Sciences
Metastases
Metastasis
Methodology
Methods
Nanoparticles
Pathology
Potassium
RAG2 protein
Recombination
Research facilities
Sentinel lymph node biopsy
Skin
Skin cancer
Supervision
Surgery
Swine
Tissue culture
Tracers
Tumors
Visualization
title Intraoperative laparoscopic detection of sentinel lymph nodes with indocyanine green and superparamagnetic iron oxide in a swine gallbladder cancer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T07%3A31%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intraoperative%20laparoscopic%20detection%20of%20sentinel%20lymph%20nodes%20with%20indocyanine%20green%20and%20superparamagnetic%20iron%20oxide%20in%20a%20swine%20gallbladder%20cancer%20model&rft.jtitle=PloS%20one&rft.au=Mihara,%20Kisyo&rft.date=2021-03-11&rft.volume=16&rft.issue=3&rft.spage=e0248531&rft.pages=e0248531-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0248531&rft_dat=%3Cgale_plos_%3EA654635469%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2500367538&rft_id=info:pmid/33705492&rft_galeid=A654635469&rft_doaj_id=oai_doaj_org_article_41b3dec02a4c45c595f320e33161c1c4&rfr_iscdi=true