Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy

Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-03, Vol.16 (3), p.e0247775-e0247775
Hauptverfasser: Peixoto, Marco Antônio, Evangelista, Jeniffer Santana Pinto Coelho, Coelho, Igor Ferreira, Alves, Rodrigo Silva, Laviola, Bruno Gâlveas, Fonseca E Silva, Fabyano, Resende, Marcos Deon Vilela de, Bhering, Leonardo Lopes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0247775
container_issue 3
container_start_page e0247775
container_title PloS one
container_volume 16
creator Peixoto, Marco Antônio
Evangelista, Jeniffer Santana Pinto Coelho
Coelho, Igor Ferreira
Alves, Rodrigo Silva
Laviola, Bruno Gâlveas
Fonseca E Silva, Fabyano
Resende, Marcos Deon Vilela de
Bhering, Leonardo Lopes
description Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.
doi_str_mv 10.1371/journal.pone.0247775
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2497142544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653840631</galeid><doaj_id>oai_doaj_org_article_14e291f520f24a988a887a159d98bb61</doaj_id><sourcerecordid>A653840631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f9536d2ca7d715fb8613e46315c6ace0197e1a6494140f99b364c98e92a4a8613</originalsourceid><addsrcrecordid>eNqNk12P1CAUhhujcdfVf2C0iYnRixmhUFpuTNaNH2PWbOLXLTmlpx02TKlAjfPvZT52M2P2wnABgee8B97DybKnlMwpq-ibazf5Aex8dAPOScGrqirvZadUsmImCsLuH6xPskchXBNSslqIh9kJY0JQWZPTDL5MNprR4ix6MDFfuRZtHpfeTf0yfwdrDAaG3Awdehw05jCO1mCbR5d_hujduIRcT15DyBuP2Jqhzzvn88Y4HND368fZgw5swCf7-Sz78eH994tPs8urj4uL88uZFrKIs06WTLSFhqqtaNk1taAMuWC01AI0EiorpCC45JSTTsqGCa5ljbIADhv4LHu-0x2tC2rvTlAFlxXlRcl5IhY7onVwrUZvVuDXyoFR2w3newU-Gm1RUY6FpF1ZkK7gIOsa6roCWspW1k2zzfZ2n21qVthqHJJ_9kj0-GQwS9W736pKNaGMJIFXewHvfk0YolqZoNFaGNBN23vXJWGlqBL64h_07tftqR7SA1LBXMqrN6LqXKTCc5LMTNT8DiqNFldGp6_UmbR_FPD6KCAxEf_EHqYQ1OLb1_9nr34esy8P2CWCjcvg7BSNG8IxyHeg9i4Ej92tyZSoTSfcuKE2naD2nZDCnh0W6Dbo5uuzv_vQApc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2497142544</pqid></control><display><type>article</type><title>Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Peixoto, Marco Antônio ; Evangelista, Jeniffer Santana Pinto Coelho ; Coelho, Igor Ferreira ; Alves, Rodrigo Silva ; Laviola, Bruno Gâlveas ; Fonseca E Silva, Fabyano ; Resende, Marcos Deon Vilela de ; Bhering, Leonardo Lopes</creator><contributor>Rahimi, Mehdi</contributor><creatorcontrib>Peixoto, Marco Antônio ; Evangelista, Jeniffer Santana Pinto Coelho ; Coelho, Igor Ferreira ; Alves, Rodrigo Silva ; Laviola, Bruno Gâlveas ; Fonseca E Silva, Fabyano ; Resende, Marcos Deon Vilela de ; Bhering, Leonardo Lopes ; Rahimi, Mehdi</creatorcontrib><description>Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0247775</identifier><identifier>PMID: 33661980</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Alternative energy ; Alternative energy sources ; Bayesian analysis ; Biodiesel fuels ; Biofuels ; Biology and Life Sciences ; Breeding ; Computer programs ; Crop yields ; Editing ; Energy demand ; Energy sources ; Engineering and Technology ; Environmental aspects ; Environmental awareness ; Euphorbiaceae ; Experiments ; Fossil fuels ; Funding ; Genetic aspects ; Genetic diversity ; Genetic variance ; Heritability ; Markov chains ; Methodology ; Parameter estimation ; Phenotypic variations ; Physical Sciences ; Renewable energy ; Research and Analysis Methods ; Residual effects ; Reviews ; Software ; Statistical inference ; Sustainability ; Sustainable development ; Variance ; Visualization</subject><ispartof>PloS one, 2021-03, Vol.16 (3), p.e0247775-e0247775</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Peixoto et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Peixoto et al 2021 Peixoto et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f9536d2ca7d715fb8613e46315c6ace0197e1a6494140f99b364c98e92a4a8613</citedby><cites>FETCH-LOGICAL-c692t-f9536d2ca7d715fb8613e46315c6ace0197e1a6494140f99b364c98e92a4a8613</cites><orcidid>0000-0002-6072-0996</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932130/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7932130/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33661980$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Rahimi, Mehdi</contributor><creatorcontrib>Peixoto, Marco Antônio</creatorcontrib><creatorcontrib>Evangelista, Jeniffer Santana Pinto Coelho</creatorcontrib><creatorcontrib>Coelho, Igor Ferreira</creatorcontrib><creatorcontrib>Alves, Rodrigo Silva</creatorcontrib><creatorcontrib>Laviola, Bruno Gâlveas</creatorcontrib><creatorcontrib>Fonseca E Silva, Fabyano</creatorcontrib><creatorcontrib>Resende, Marcos Deon Vilela de</creatorcontrib><creatorcontrib>Bhering, Leonardo Lopes</creatorcontrib><title>Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.</description><subject>Algorithms</subject><subject>Alternative energy</subject><subject>Alternative energy sources</subject><subject>Bayesian analysis</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biology and Life Sciences</subject><subject>Breeding</subject><subject>Computer programs</subject><subject>Crop yields</subject><subject>Editing</subject><subject>Energy demand</subject><subject>Energy sources</subject><subject>Engineering and Technology</subject><subject>Environmental aspects</subject><subject>Environmental awareness</subject><subject>Euphorbiaceae</subject><subject>Experiments</subject><subject>Fossil fuels</subject><subject>Funding</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>Heritability</subject><subject>Markov chains</subject><subject>Methodology</subject><subject>Parameter estimation</subject><subject>Phenotypic variations</subject><subject>Physical Sciences</subject><subject>Renewable energy</subject><subject>Research and Analysis Methods</subject><subject>Residual effects</subject><subject>Reviews</subject><subject>Software</subject><subject>Statistical inference</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Variance</subject><subject>Visualization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12P1CAUhhujcdfVf2C0iYnRixmhUFpuTNaNH2PWbOLXLTmlpx02TKlAjfPvZT52M2P2wnABgee8B97DybKnlMwpq-ibazf5Aex8dAPOScGrqirvZadUsmImCsLuH6xPskchXBNSslqIh9kJY0JQWZPTDL5MNprR4ix6MDFfuRZtHpfeTf0yfwdrDAaG3Awdehw05jCO1mCbR5d_hujduIRcT15DyBuP2Jqhzzvn88Y4HND368fZgw5swCf7-Sz78eH994tPs8urj4uL88uZFrKIs06WTLSFhqqtaNk1taAMuWC01AI0EiorpCC45JSTTsqGCa5ljbIADhv4LHu-0x2tC2rvTlAFlxXlRcl5IhY7onVwrUZvVuDXyoFR2w3newU-Gm1RUY6FpF1ZkK7gIOsa6roCWspW1k2zzfZ2n21qVthqHJJ_9kj0-GQwS9W736pKNaGMJIFXewHvfk0YolqZoNFaGNBN23vXJWGlqBL64h_07tftqR7SA1LBXMqrN6LqXKTCc5LMTNT8DiqNFldGp6_UmbR_FPD6KCAxEf_EHqYQ1OLb1_9nr34esy8P2CWCjcvg7BSNG8IxyHeg9i4Ej92tyZSoTSfcuKE2naD2nZDCnh0W6Dbo5uuzv_vQApc</recordid><startdate>20210304</startdate><enddate>20210304</enddate><creator>Peixoto, Marco Antônio</creator><creator>Evangelista, Jeniffer Santana Pinto Coelho</creator><creator>Coelho, Igor Ferreira</creator><creator>Alves, Rodrigo Silva</creator><creator>Laviola, Bruno Gâlveas</creator><creator>Fonseca E Silva, Fabyano</creator><creator>Resende, Marcos Deon Vilela de</creator><creator>Bhering, Leonardo Lopes</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6072-0996</orcidid></search><sort><creationdate>20210304</creationdate><title>Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy</title><author>Peixoto, Marco Antônio ; Evangelista, Jeniffer Santana Pinto Coelho ; Coelho, Igor Ferreira ; Alves, Rodrigo Silva ; Laviola, Bruno Gâlveas ; Fonseca E Silva, Fabyano ; Resende, Marcos Deon Vilela de ; Bhering, Leonardo Lopes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f9536d2ca7d715fb8613e46315c6ace0197e1a6494140f99b364c98e92a4a8613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Alternative energy</topic><topic>Alternative energy sources</topic><topic>Bayesian analysis</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biology and Life Sciences</topic><topic>Breeding</topic><topic>Computer programs</topic><topic>Crop yields</topic><topic>Editing</topic><topic>Energy demand</topic><topic>Energy sources</topic><topic>Engineering and Technology</topic><topic>Environmental aspects</topic><topic>Environmental awareness</topic><topic>Euphorbiaceae</topic><topic>Experiments</topic><topic>Fossil fuels</topic><topic>Funding</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>Heritability</topic><topic>Markov chains</topic><topic>Methodology</topic><topic>Parameter estimation</topic><topic>Phenotypic variations</topic><topic>Physical Sciences</topic><topic>Renewable energy</topic><topic>Research and Analysis Methods</topic><topic>Residual effects</topic><topic>Reviews</topic><topic>Software</topic><topic>Statistical inference</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Variance</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peixoto, Marco Antônio</creatorcontrib><creatorcontrib>Evangelista, Jeniffer Santana Pinto Coelho</creatorcontrib><creatorcontrib>Coelho, Igor Ferreira</creatorcontrib><creatorcontrib>Alves, Rodrigo Silva</creatorcontrib><creatorcontrib>Laviola, Bruno Gâlveas</creatorcontrib><creatorcontrib>Fonseca E Silva, Fabyano</creatorcontrib><creatorcontrib>Resende, Marcos Deon Vilela de</creatorcontrib><creatorcontrib>Bhering, Leonardo Lopes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peixoto, Marco Antônio</au><au>Evangelista, Jeniffer Santana Pinto Coelho</au><au>Coelho, Igor Ferreira</au><au>Alves, Rodrigo Silva</au><au>Laviola, Bruno Gâlveas</au><au>Fonseca E Silva, Fabyano</au><au>Resende, Marcos Deon Vilela de</au><au>Bhering, Leonardo Lopes</au><au>Rahimi, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-03-04</date><risdate>2021</risdate><volume>16</volume><issue>3</issue><spage>e0247775</spage><epage>e0247775</epage><pages>e0247775-e0247775</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multiple-trait model tends to be the best alternative for the analysis of repeated measures, since they consider the genetic and residual correlations between measures and improve the selective accuracy. Thus, the objective of this study was to propose a multiple-trait Bayesian model for repeated measures analysis in Jatropha curcas breeding for bioenergy. To this end, the grain yield trait of 730 individuals of 73 half-sib families was evaluated over six harvests. The Markov Chain Monte Carlo algorithm was used to estimate genetic parameters and genetic values. Genetic correlation between pairs of measures were estimated and four selective intensities (27.4%, 20.5%, 13.7%, and 6.9%) were used to compute the selection gains. The full model was selected based on deviance information criterion. Genetic correlations of low (ρg ≤ 0.33), moderate (0.34 ≤ ρg ≤ 0.66), and high magnitude (ρg ≥ 0.67) were observed between pairs of harvests. Bayesian analyses provide robust inference of genetic parameters and genetic values, with high selective accuracies. In summary, the multiple-trait Bayesian model allowed the reliable selection of superior Jatropha curcas progenies. Therefore, we recommend this model to genetic evaluation of Jatropha curcas genotypes, and its generalization, in other perennials.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33661980</pmid><doi>10.1371/journal.pone.0247775</doi><tpages>e0247775</tpages><orcidid>https://orcid.org/0000-0002-6072-0996</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-03, Vol.16 (3), p.e0247775-e0247775
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2497142544
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Alternative energy
Alternative energy sources
Bayesian analysis
Biodiesel fuels
Biofuels
Biology and Life Sciences
Breeding
Computer programs
Crop yields
Editing
Energy demand
Energy sources
Engineering and Technology
Environmental aspects
Environmental awareness
Euphorbiaceae
Experiments
Fossil fuels
Funding
Genetic aspects
Genetic diversity
Genetic variance
Heritability
Markov chains
Methodology
Parameter estimation
Phenotypic variations
Physical Sciences
Renewable energy
Research and Analysis Methods
Residual effects
Reviews
Software
Statistical inference
Sustainability
Sustainable development
Variance
Visualization
title Multiple-trait model through Bayesian inference applied to Jatropha curcas breeding for bioenergy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T04%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple-trait%20model%20through%20Bayesian%20inference%20applied%20to%20Jatropha%20curcas%20breeding%20for%20bioenergy&rft.jtitle=PloS%20one&rft.au=Peixoto,%20Marco%20Ant%C3%B4nio&rft.date=2021-03-04&rft.volume=16&rft.issue=3&rft.spage=e0247775&rft.epage=e0247775&rft.pages=e0247775-e0247775&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0247775&rft_dat=%3Cgale_plos_%3EA653840631%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2497142544&rft_id=info:pmid/33661980&rft_galeid=A653840631&rft_doaj_id=oai_doaj_org_article_14e291f520f24a988a887a159d98bb61&rfr_iscdi=true