Waist circumference and low high-density lipoprotein cholesterol as markers of cardiometabolic risk in Kenyan adults

Abdominal obesity predict metabolic syndrome parameters at low levels of waist circumference (WC) in Africans. At the same time, the African lipid profile phenotype of low high-density lipoprotein (HDL) cholesterol without concomitant elevated triglyceride levels renders high triglyceride levels det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-02, Vol.16 (2), p.e0247600-e0247600
Hauptverfasser: Faurholt-Jepsen, Daniel, Friis, Henrik, Mwaniki, David L, Boit, Michael K, Kaduka, Lydia U, Tetens, Inge, Christensen, Dirk L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0247600
container_issue 2
container_start_page e0247600
container_title PloS one
container_volume 16
creator Faurholt-Jepsen, Daniel
Friis, Henrik
Mwaniki, David L
Boit, Michael K
Kaduka, Lydia U
Tetens, Inge
Christensen, Dirk L
description Abdominal obesity predict metabolic syndrome parameters at low levels of waist circumference (WC) in Africans. At the same time, the African lipid profile phenotype of low high-density lipoprotein (HDL) cholesterol without concomitant elevated triglyceride levels renders high triglyceride levels detrimental to cardiometabolic health unsuitable for identifying cardiometabolic risk in black African populations. We aimed to identify simple clinical measures for cardiometabolic risk based on WC and HDL in an adult Kenyan population in order to determine which of the two predictors had the strongest impact. We used linear regression analyses to assess the association between the two exposure variables WC and HDL with cardiometabolic risk factors including ultrasound-derived visceral (VAT) and subcutaneous adipose tissue (SAT) accumulation, fasting and 2-h venous glucose, fasting insulin, fasting lipid profile, and blood pressure in adult Kenyans (n = 1 370), and a sub-population with hyperglycaemia (diabetes and pre-diabetes) (n = 196). The same analyses were performed with an interaction between WC and HDL to address potential effect modification. Ultrasound-based, semi-quantitative hepatic steatosis assessment was used as a high-risk measure of cardiometabolic disease. Mean age was 38.2 (SD 10.7) (range 17-68) years, mean body mass index was 22.3 (SD 4.5) (range 13.0-44.8) kg/m2, and 57.8% were women. Cardiometabolic risk was found in the association between both WC and HDL and all outcome variables (p
doi_str_mv 10.1371/journal.pone.0247600
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2493461831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653037885</galeid><doaj_id>oai_doaj_org_article_857d89ceff074f1193fa22e074c7ed24</doaj_id><sourcerecordid>A653037885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-d232d7cfcac02633d4f8f128cd09a8185f426673d6361f3f3b5ec111df64977e3</originalsourceid><addsrcrecordid>eNqNk11vFCEUhidGY2v1HxglMTF6sSsfMzBzY9I0fjQ2aeLnJaFw2KVlYQVG3X8v206brumFmQsG5nlfOC9zmuYpwXPCBHlzHscUlJ-vY4A5pq3gGN9r9snA6IxTzO7fet9rHuV8jnHHes4fNnuMcYYHwfeb8kO5XJB2SY8rCwmCBqSCQT7-Rku3WM4MhOzKBnm3jusUC7iA9DJ6yAVS9EhltFLpAlJG0SKtknFxBUWdRe80Si5foKr4BGGjAlJm9CU_bh5Y5TM8mcaD5tv7d1-PPs5OTj8cHx2ezDRvSZkZyqgR2mqlMeWMmdb2ltBeGzyonvSdbSnnghnOOLHMsrMONCHEWN4OQgA7aJ5f-a59zHIKLEvaDqzlpGekEsdXhInqXK6Tq6VsZFROXi7EtJAqFac9yL4Tph80WItFa0nN1ipKoU60AEPb6vV22m08W4HREEpSfsd090twS7mIv6QYcL0OUQ1eTQYp_hxrvnLlsgbvVYA4Xp67pQPvu6GiL_5B765uohaqFuCCjXVfvTWVh7xjmIm-7yo1v4Oqj4GV0_Xvsq6u7whe7wgqU-BPWagxZ3n85fP_s6ffd9mXt9glKF-WOfqxuBjyLthegTrFnBPYm5AJltvmuE5DbptDTs1RZc9uX9CN6Lob2F_bjgs7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493461831</pqid></control><display><type>article</type><title>Waist circumference and low high-density lipoprotein cholesterol as markers of cardiometabolic risk in Kenyan adults</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Faurholt-Jepsen, Daniel ; Friis, Henrik ; Mwaniki, David L ; Boit, Michael K ; Kaduka, Lydia U ; Tetens, Inge ; Christensen, Dirk L</creator><contributor>Pucci, Giacomo</contributor><creatorcontrib>Faurholt-Jepsen, Daniel ; Friis, Henrik ; Mwaniki, David L ; Boit, Michael K ; Kaduka, Lydia U ; Tetens, Inge ; Christensen, Dirk L ; Pucci, Giacomo</creatorcontrib><description>Abdominal obesity predict metabolic syndrome parameters at low levels of waist circumference (WC) in Africans. At the same time, the African lipid profile phenotype of low high-density lipoprotein (HDL) cholesterol without concomitant elevated triglyceride levels renders high triglyceride levels detrimental to cardiometabolic health unsuitable for identifying cardiometabolic risk in black African populations. We aimed to identify simple clinical measures for cardiometabolic risk based on WC and HDL in an adult Kenyan population in order to determine which of the two predictors had the strongest impact. We used linear regression analyses to assess the association between the two exposure variables WC and HDL with cardiometabolic risk factors including ultrasound-derived visceral (VAT) and subcutaneous adipose tissue (SAT) accumulation, fasting and 2-h venous glucose, fasting insulin, fasting lipid profile, and blood pressure in adult Kenyans (n = 1 370), and a sub-population with hyperglycaemia (diabetes and pre-diabetes) (n = 196). The same analyses were performed with an interaction between WC and HDL to address potential effect modification. Ultrasound-based, semi-quantitative hepatic steatosis assessment was used as a high-risk measure of cardiometabolic disease. Mean age was 38.2 (SD 10.7) (range 17-68) years, mean body mass index was 22.3 (SD 4.5) (range 13.0-44.8) kg/m2, and 57.8% were women. Cardiometabolic risk was found in the association between both WC and HDL and all outcome variables (p&lt;0.05) except for HDL and SAT, fasting and 2-h venous glucose. Additive cardiometabolic risk (WC and HDL interaction) was found for SAT, low-density lipoprotein cholesterol, and triglycerides. No differences in the association between WC and HDL and the outcome variables were found when comparing the full study population and the hyperglycaemia sub-population. Increase in WC and HDL were both associated with hepatic steatosis (OR 1.09, p&lt;0.001, and OR 0.46, p = 0.031, respectively). In adult Kenyans, increasing WC identified more cardiometabolic risk factors compared to HDL.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0247600</identifier><identifier>PMID: 33630976</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biochemistry ; Biology and Life Sciences ; Blood pressure ; Body composition ; Body size ; Cardiovascular diseases ; Cholesterol ; Cholesterol, HDL ; Complications and side effects ; Density ; Diabetes ; Editing ; Glucose ; Health aspects ; Health risks ; High density lipoprotein ; Immunoassay ; Infectious diseases ; Insulin ; Lipids ; Lipoproteins ; Markers ; Medical research ; Medicine and Health Sciences ; Men ; Meta-analysis ; Metabolic diseases ; Metabolic disorders ; Metabolic syndrome ; Metabolism ; Methodology ; Minority &amp; ethnic groups ; Nutrition ; Obesity ; Phenotypes ; Plasma ; Population ; Public health ; Regression analysis ; Reviews ; Risk analysis ; Risk factors ; Rural areas ; Sports ; Triglycerides ; Ultrasonic imaging ; Values ; Visualization ; Womens health</subject><ispartof>PloS one, 2021-02, Vol.16 (2), p.e0247600-e0247600</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Faurholt-Jepsen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Faurholt-Jepsen et al 2021 Faurholt-Jepsen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-d232d7cfcac02633d4f8f128cd09a8185f426673d6361f3f3b5ec111df64977e3</cites><orcidid>0000-0001-8561-0155 ; 0000-0003-2142-522X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906307/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906307/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33630976$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pucci, Giacomo</contributor><creatorcontrib>Faurholt-Jepsen, Daniel</creatorcontrib><creatorcontrib>Friis, Henrik</creatorcontrib><creatorcontrib>Mwaniki, David L</creatorcontrib><creatorcontrib>Boit, Michael K</creatorcontrib><creatorcontrib>Kaduka, Lydia U</creatorcontrib><creatorcontrib>Tetens, Inge</creatorcontrib><creatorcontrib>Christensen, Dirk L</creatorcontrib><title>Waist circumference and low high-density lipoprotein cholesterol as markers of cardiometabolic risk in Kenyan adults</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Abdominal obesity predict metabolic syndrome parameters at low levels of waist circumference (WC) in Africans. At the same time, the African lipid profile phenotype of low high-density lipoprotein (HDL) cholesterol without concomitant elevated triglyceride levels renders high triglyceride levels detrimental to cardiometabolic health unsuitable for identifying cardiometabolic risk in black African populations. We aimed to identify simple clinical measures for cardiometabolic risk based on WC and HDL in an adult Kenyan population in order to determine which of the two predictors had the strongest impact. We used linear regression analyses to assess the association between the two exposure variables WC and HDL with cardiometabolic risk factors including ultrasound-derived visceral (VAT) and subcutaneous adipose tissue (SAT) accumulation, fasting and 2-h venous glucose, fasting insulin, fasting lipid profile, and blood pressure in adult Kenyans (n = 1 370), and a sub-population with hyperglycaemia (diabetes and pre-diabetes) (n = 196). The same analyses were performed with an interaction between WC and HDL to address potential effect modification. Ultrasound-based, semi-quantitative hepatic steatosis assessment was used as a high-risk measure of cardiometabolic disease. Mean age was 38.2 (SD 10.7) (range 17-68) years, mean body mass index was 22.3 (SD 4.5) (range 13.0-44.8) kg/m2, and 57.8% were women. Cardiometabolic risk was found in the association between both WC and HDL and all outcome variables (p&lt;0.05) except for HDL and SAT, fasting and 2-h venous glucose. Additive cardiometabolic risk (WC and HDL interaction) was found for SAT, low-density lipoprotein cholesterol, and triglycerides. No differences in the association between WC and HDL and the outcome variables were found when comparing the full study population and the hyperglycaemia sub-population. Increase in WC and HDL were both associated with hepatic steatosis (OR 1.09, p&lt;0.001, and OR 0.46, p = 0.031, respectively). In adult Kenyans, increasing WC identified more cardiometabolic risk factors compared to HDL.</description><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Body composition</subject><subject>Body size</subject><subject>Cardiovascular diseases</subject><subject>Cholesterol</subject><subject>Cholesterol, HDL</subject><subject>Complications and side effects</subject><subject>Density</subject><subject>Diabetes</subject><subject>Editing</subject><subject>Glucose</subject><subject>Health aspects</subject><subject>Health risks</subject><subject>High density lipoprotein</subject><subject>Immunoassay</subject><subject>Infectious diseases</subject><subject>Insulin</subject><subject>Lipids</subject><subject>Lipoproteins</subject><subject>Markers</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Men</subject><subject>Meta-analysis</subject><subject>Metabolic diseases</subject><subject>Metabolic disorders</subject><subject>Metabolic syndrome</subject><subject>Metabolism</subject><subject>Methodology</subject><subject>Minority &amp; ethnic groups</subject><subject>Nutrition</subject><subject>Obesity</subject><subject>Phenotypes</subject><subject>Plasma</subject><subject>Population</subject><subject>Public health</subject><subject>Regression analysis</subject><subject>Reviews</subject><subject>Risk analysis</subject><subject>Risk factors</subject><subject>Rural areas</subject><subject>Sports</subject><subject>Triglycerides</subject><subject>Ultrasonic imaging</subject><subject>Values</subject><subject>Visualization</subject><subject>Womens health</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11vFCEUhidGY2v1HxglMTF6sSsfMzBzY9I0fjQ2aeLnJaFw2KVlYQVG3X8v206brumFmQsG5nlfOC9zmuYpwXPCBHlzHscUlJ-vY4A5pq3gGN9r9snA6IxTzO7fet9rHuV8jnHHes4fNnuMcYYHwfeb8kO5XJB2SY8rCwmCBqSCQT7-Rku3WM4MhOzKBnm3jusUC7iA9DJ6yAVS9EhltFLpAlJG0SKtknFxBUWdRe80Si5foKr4BGGjAlJm9CU_bh5Y5TM8mcaD5tv7d1-PPs5OTj8cHx2ezDRvSZkZyqgR2mqlMeWMmdb2ltBeGzyonvSdbSnnghnOOLHMsrMONCHEWN4OQgA7aJ5f-a59zHIKLEvaDqzlpGekEsdXhInqXK6Tq6VsZFROXi7EtJAqFac9yL4Tph80WItFa0nN1ipKoU60AEPb6vV22m08W4HREEpSfsd090twS7mIv6QYcL0OUQ1eTQYp_hxrvnLlsgbvVYA4Xp67pQPvu6GiL_5B765uohaqFuCCjXVfvTWVh7xjmIm-7yo1v4Oqj4GV0_Xvsq6u7whe7wgqU-BPWagxZ3n85fP_s6ffd9mXt9glKF-WOfqxuBjyLthegTrFnBPYm5AJltvmuE5DbptDTs1RZc9uX9CN6Lob2F_bjgs7</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Faurholt-Jepsen, Daniel</creator><creator>Friis, Henrik</creator><creator>Mwaniki, David L</creator><creator>Boit, Michael K</creator><creator>Kaduka, Lydia U</creator><creator>Tetens, Inge</creator><creator>Christensen, Dirk L</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8561-0155</orcidid><orcidid>https://orcid.org/0000-0003-2142-522X</orcidid></search><sort><creationdate>20210225</creationdate><title>Waist circumference and low high-density lipoprotein cholesterol as markers of cardiometabolic risk in Kenyan adults</title><author>Faurholt-Jepsen, Daniel ; Friis, Henrik ; Mwaniki, David L ; Boit, Michael K ; Kaduka, Lydia U ; Tetens, Inge ; Christensen, Dirk L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-d232d7cfcac02633d4f8f128cd09a8185f426673d6361f3f3b5ec111df64977e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Body composition</topic><topic>Body size</topic><topic>Cardiovascular diseases</topic><topic>Cholesterol</topic><topic>Cholesterol, HDL</topic><topic>Complications and side effects</topic><topic>Density</topic><topic>Diabetes</topic><topic>Editing</topic><topic>Glucose</topic><topic>Health aspects</topic><topic>Health risks</topic><topic>High density lipoprotein</topic><topic>Immunoassay</topic><topic>Infectious diseases</topic><topic>Insulin</topic><topic>Lipids</topic><topic>Lipoproteins</topic><topic>Markers</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Men</topic><topic>Meta-analysis</topic><topic>Metabolic diseases</topic><topic>Metabolic disorders</topic><topic>Metabolic syndrome</topic><topic>Metabolism</topic><topic>Methodology</topic><topic>Minority &amp; ethnic groups</topic><topic>Nutrition</topic><topic>Obesity</topic><topic>Phenotypes</topic><topic>Plasma</topic><topic>Population</topic><topic>Public health</topic><topic>Regression analysis</topic><topic>Reviews</topic><topic>Risk analysis</topic><topic>Risk factors</topic><topic>Rural areas</topic><topic>Sports</topic><topic>Triglycerides</topic><topic>Ultrasonic imaging</topic><topic>Values</topic><topic>Visualization</topic><topic>Womens health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faurholt-Jepsen, Daniel</creatorcontrib><creatorcontrib>Friis, Henrik</creatorcontrib><creatorcontrib>Mwaniki, David L</creatorcontrib><creatorcontrib>Boit, Michael K</creatorcontrib><creatorcontrib>Kaduka, Lydia U</creatorcontrib><creatorcontrib>Tetens, Inge</creatorcontrib><creatorcontrib>Christensen, Dirk L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faurholt-Jepsen, Daniel</au><au>Friis, Henrik</au><au>Mwaniki, David L</au><au>Boit, Michael K</au><au>Kaduka, Lydia U</au><au>Tetens, Inge</au><au>Christensen, Dirk L</au><au>Pucci, Giacomo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Waist circumference and low high-density lipoprotein cholesterol as markers of cardiometabolic risk in Kenyan adults</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-02-25</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>e0247600</spage><epage>e0247600</epage><pages>e0247600-e0247600</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Abdominal obesity predict metabolic syndrome parameters at low levels of waist circumference (WC) in Africans. At the same time, the African lipid profile phenotype of low high-density lipoprotein (HDL) cholesterol without concomitant elevated triglyceride levels renders high triglyceride levels detrimental to cardiometabolic health unsuitable for identifying cardiometabolic risk in black African populations. We aimed to identify simple clinical measures for cardiometabolic risk based on WC and HDL in an adult Kenyan population in order to determine which of the two predictors had the strongest impact. We used linear regression analyses to assess the association between the two exposure variables WC and HDL with cardiometabolic risk factors including ultrasound-derived visceral (VAT) and subcutaneous adipose tissue (SAT) accumulation, fasting and 2-h venous glucose, fasting insulin, fasting lipid profile, and blood pressure in adult Kenyans (n = 1 370), and a sub-population with hyperglycaemia (diabetes and pre-diabetes) (n = 196). The same analyses were performed with an interaction between WC and HDL to address potential effect modification. Ultrasound-based, semi-quantitative hepatic steatosis assessment was used as a high-risk measure of cardiometabolic disease. Mean age was 38.2 (SD 10.7) (range 17-68) years, mean body mass index was 22.3 (SD 4.5) (range 13.0-44.8) kg/m2, and 57.8% were women. Cardiometabolic risk was found in the association between both WC and HDL and all outcome variables (p&lt;0.05) except for HDL and SAT, fasting and 2-h venous glucose. Additive cardiometabolic risk (WC and HDL interaction) was found for SAT, low-density lipoprotein cholesterol, and triglycerides. No differences in the association between WC and HDL and the outcome variables were found when comparing the full study population and the hyperglycaemia sub-population. Increase in WC and HDL were both associated with hepatic steatosis (OR 1.09, p&lt;0.001, and OR 0.46, p = 0.031, respectively). In adult Kenyans, increasing WC identified more cardiometabolic risk factors compared to HDL.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33630976</pmid><doi>10.1371/journal.pone.0247600</doi><orcidid>https://orcid.org/0000-0001-8561-0155</orcidid><orcidid>https://orcid.org/0000-0003-2142-522X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-02, Vol.16 (2), p.e0247600-e0247600
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2493461831
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Biochemistry
Biology and Life Sciences
Blood pressure
Body composition
Body size
Cardiovascular diseases
Cholesterol
Cholesterol, HDL
Complications and side effects
Density
Diabetes
Editing
Glucose
Health aspects
Health risks
High density lipoprotein
Immunoassay
Infectious diseases
Insulin
Lipids
Lipoproteins
Markers
Medical research
Medicine and Health Sciences
Men
Meta-analysis
Metabolic diseases
Metabolic disorders
Metabolic syndrome
Metabolism
Methodology
Minority & ethnic groups
Nutrition
Obesity
Phenotypes
Plasma
Population
Public health
Regression analysis
Reviews
Risk analysis
Risk factors
Rural areas
Sports
Triglycerides
Ultrasonic imaging
Values
Visualization
Womens health
title Waist circumference and low high-density lipoprotein cholesterol as markers of cardiometabolic risk in Kenyan adults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Waist%20circumference%20and%20low%20high-density%20lipoprotein%20cholesterol%20as%20markers%20of%20cardiometabolic%20risk%20in%20Kenyan%20adults&rft.jtitle=PloS%20one&rft.au=Faurholt-Jepsen,%20Daniel&rft.date=2021-02-25&rft.volume=16&rft.issue=2&rft.spage=e0247600&rft.epage=e0247600&rft.pages=e0247600-e0247600&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0247600&rft_dat=%3Cgale_plos_%3EA653037885%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493461831&rft_id=info:pmid/33630976&rft_galeid=A653037885&rft_doaj_id=oai_doaj_org_article_857d89ceff074f1193fa22e074c7ed24&rfr_iscdi=true