Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning

Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-02, Vol.16 (2), p.e0246790-e0246790
Hauptverfasser: Bargiotas, Ioannis, Kalogeratos, Argyris, Limnios, Myrto, Vidal, Pierre-Paul, Ricard, Damien, Vayatis, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0246790
container_issue 2
container_start_page e0246790
container_title PloS one
container_volume 16
creator Bargiotas, Ioannis
Kalogeratos, Argyris
Limnios, Myrto
Vidal, Pierre-Paul
Ricard, Damien
Vayatis, Nicolas
description Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams' differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.
doi_str_mv 10.1371/journal.pone.0246790
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2493460592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A653037933</galeid><doaj_id>oai_doaj_org_article_82ec0a87a7cb4f0dbcac4e5b98d307b5</doaj_id><sourcerecordid>A653037933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-d9b0a5b6fe5fcfc3494f6394978b99f09062867317784ca318fa63e13e7abff13</originalsourceid><addsrcrecordid>eNqNk11r1TAYx4sobk6_gWhAEHdxjmnTJs2NcBjqBoPJfLkNT9OkzdYmNWnP3KfwK5vunI2dsQvpRUrye_7Pe5K8TvEyJSz9eOEmb6FbDs6qJc5yyjh-kuynnGQLmmHy9N7_XvIihAuMC1JS-jzZI4QSXNJiP_l7rtYKOmMbNLgwTt41HobWSDR4p02nkNNogNEoOwZ0ZcYWfQN_aWxw1oBF4drW3vUqoLH1bmpaBMi6tepQez24sVXBxCcVxtmD9tCrK-cvUQVB1chZ1INsjVWoU-BtZF4mzzR0Qb3angfJzy-ffxwdL07Pvp4crU4XkmV0XNS8wlBUVKtCSy1JznNNCc85KyvONeaYZiVlJGWszCWQtNRAiUqJYlBpnZKD5O1Gd-hcENtaBpHlnOQUFzyLxMmGqB1ciMGbHvy1cGDEzYXzjQA_GtkpUWZKYigZMFnlGteVBJmrouJlTTCriqj1aettqnpVy1hMD92O6O6LNa1o3FrEnsZOkShwuBFoH5gdr07FfIdjiowRvp5T-7B15t3vKZZe9CZI1XVglZtucswzzjid43r3AH28EluqgZissdrFGOUsKlZRBBPGyRzi8hEqfrXqjYxDOk_TrsHhjkFkRvVnbGAKQZx8P_9_9uzXLvv-HtvG6R7b4LppNM6GXTDfgNK7ELzSd5VNsZh37LYaYt4xsd2xaPbmfjPvjG6XivwDft8kuQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2493460592</pqid></control><display><type>article</type><title>Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bargiotas, Ioannis ; Kalogeratos, Argyris ; Limnios, Myrto ; Vidal, Pierre-Paul ; Ricard, Damien ; Vayatis, Nicolas</creator><contributor>Barbieri, Fabio A.</contributor><creatorcontrib>Bargiotas, Ioannis ; Kalogeratos, Argyris ; Limnios, Myrto ; Vidal, Pierre-Paul ; Ricard, Damien ; Vayatis, Nicolas ; Barbieri, Fabio A.</creatorcontrib><description>Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams' differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0246790</identifier><identifier>PMID: 33630865</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Artificial Intelligence ; Automation ; Balance ; Basal ganglia ; Biology and Life Sciences ; Central nervous system diseases ; Complications and side effects ; Computer and Information Sciences ; Computer Science ; Datasets ; Drafting software ; Editing ; Geriatry and gerontology ; Health risks ; Human health and pathology ; Hypotheses ; Learning algorithms ; Life Sciences ; Machine Learning ; Mathematics ; Medicine and Health Sciences ; Movement disorders ; Neurology ; Parkinsonism, Symptomatic ; Physical Sciences ; Physiological aspects ; Posture ; Research and Analysis Methods ; Signal and Image Processing ; Statistical analysis ; Statistical methods ; Statistics ; Visualization</subject><ispartof>PloS one, 2021-02, Vol.16 (2), p.e0246790-e0246790</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Bargiotas et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2021 Bargiotas et al 2021 Bargiotas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-d9b0a5b6fe5fcfc3494f6394978b99f09062867317784ca318fa63e13e7abff13</citedby><cites>FETCH-LOGICAL-c726t-d9b0a5b6fe5fcfc3494f6394978b99f09062867317784ca318fa63e13e7abff13</cites><orcidid>0000-0002-1069-1293 ; 0000-0001-9365-4801 ; 0000-0003-4308-4681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906303/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906303/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33630865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03187739$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Barbieri, Fabio A.</contributor><creatorcontrib>Bargiotas, Ioannis</creatorcontrib><creatorcontrib>Kalogeratos, Argyris</creatorcontrib><creatorcontrib>Limnios, Myrto</creatorcontrib><creatorcontrib>Vidal, Pierre-Paul</creatorcontrib><creatorcontrib>Ricard, Damien</creatorcontrib><creatorcontrib>Vayatis, Nicolas</creatorcontrib><title>Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams' differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.</description><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Balance</subject><subject>Basal ganglia</subject><subject>Biology and Life Sciences</subject><subject>Central nervous system diseases</subject><subject>Complications and side effects</subject><subject>Computer and Information Sciences</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Drafting software</subject><subject>Editing</subject><subject>Geriatry and gerontology</subject><subject>Health risks</subject><subject>Human health and pathology</subject><subject>Hypotheses</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Medicine and Health Sciences</subject><subject>Movement disorders</subject><subject>Neurology</subject><subject>Parkinsonism, Symptomatic</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Posture</subject><subject>Research and Analysis Methods</subject><subject>Signal and Image Processing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Visualization</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r1TAYx4sobk6_gWhAEHdxjmnTJs2NcBjqBoPJfLkNT9OkzdYmNWnP3KfwK5vunI2dsQvpRUrye_7Pe5K8TvEyJSz9eOEmb6FbDs6qJc5yyjh-kuynnGQLmmHy9N7_XvIihAuMC1JS-jzZI4QSXNJiP_l7rtYKOmMbNLgwTt41HobWSDR4p02nkNNogNEoOwZ0ZcYWfQN_aWxw1oBF4drW3vUqoLH1bmpaBMi6tepQez24sVXBxCcVxtmD9tCrK-cvUQVB1chZ1INsjVWoU-BtZF4mzzR0Qb3angfJzy-ffxwdL07Pvp4crU4XkmV0XNS8wlBUVKtCSy1JznNNCc85KyvONeaYZiVlJGWszCWQtNRAiUqJYlBpnZKD5O1Gd-hcENtaBpHlnOQUFzyLxMmGqB1ciMGbHvy1cGDEzYXzjQA_GtkpUWZKYigZMFnlGteVBJmrouJlTTCriqj1aettqnpVy1hMD92O6O6LNa1o3FrEnsZOkShwuBFoH5gdr07FfIdjiowRvp5T-7B15t3vKZZe9CZI1XVglZtucswzzjid43r3AH28EluqgZissdrFGOUsKlZRBBPGyRzi8hEqfrXqjYxDOk_TrsHhjkFkRvVnbGAKQZx8P_9_9uzXLvv-HtvG6R7b4LppNM6GXTDfgNK7ELzSd5VNsZh37LYaYt4xsd2xaPbmfjPvjG6XivwDft8kuQ</recordid><startdate>20210225</startdate><enddate>20210225</enddate><creator>Bargiotas, Ioannis</creator><creator>Kalogeratos, Argyris</creator><creator>Limnios, Myrto</creator><creator>Vidal, Pierre-Paul</creator><creator>Ricard, Damien</creator><creator>Vayatis, Nicolas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1069-1293</orcidid><orcidid>https://orcid.org/0000-0001-9365-4801</orcidid><orcidid>https://orcid.org/0000-0003-4308-4681</orcidid></search><sort><creationdate>20210225</creationdate><title>Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning</title><author>Bargiotas, Ioannis ; Kalogeratos, Argyris ; Limnios, Myrto ; Vidal, Pierre-Paul ; Ricard, Damien ; Vayatis, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-d9b0a5b6fe5fcfc3494f6394978b99f09062867317784ca318fa63e13e7abff13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Balance</topic><topic>Basal ganglia</topic><topic>Biology and Life Sciences</topic><topic>Central nervous system diseases</topic><topic>Complications and side effects</topic><topic>Computer and Information Sciences</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Drafting software</topic><topic>Editing</topic><topic>Geriatry and gerontology</topic><topic>Health risks</topic><topic>Human health and pathology</topic><topic>Hypotheses</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Medicine and Health Sciences</topic><topic>Movement disorders</topic><topic>Neurology</topic><topic>Parkinsonism, Symptomatic</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Posture</topic><topic>Research and Analysis Methods</topic><topic>Signal and Image Processing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bargiotas, Ioannis</creatorcontrib><creatorcontrib>Kalogeratos, Argyris</creatorcontrib><creatorcontrib>Limnios, Myrto</creatorcontrib><creatorcontrib>Vidal, Pierre-Paul</creatorcontrib><creatorcontrib>Ricard, Damien</creatorcontrib><creatorcontrib>Vayatis, Nicolas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bargiotas, Ioannis</au><au>Kalogeratos, Argyris</au><au>Limnios, Myrto</au><au>Vidal, Pierre-Paul</au><au>Ricard, Damien</au><au>Vayatis, Nicolas</au><au>Barbieri, Fabio A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-02-25</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>e0246790</spage><epage>e0246790</epage><pages>e0246790-e0246790</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Falling in Parkinsonian syndromes (PS) is associated with postural instability and consists a common cause of disability among PS patients. Current posturographic practices record the body's center-of-pressure displacement (statokinesigram) while the patient stands on a force platform. Statokinesigrams, after appropriate processing, can offer numerous posturographic features. This fact, although beneficial, challenges the efforts for valid statistics via standard univariate approaches. In this work, 123 PS patients were classified into fallers (PSF) or non-faller (PSNF) based on the clinical assessment, and underwent simple Romberg Test (eyes open/eyes closed). We developed a non-parametric multivariate two-sample test (ts-AUC) based on machine learning, in order to examine statokinesigrams' differences between PSF and PSNF. We analyzed posturographic features using both multiple testing with p-value adjustment and ts-AUC. While ts-AUC showed significant difference between groups (p-value = 0.01), multiple testing did not agree with this result (eyes open). PSF showed significantly increased antero-posterior movements as well as increased posturographic area compared to PSNF. Our study highlights the superiority of ts-AUC compared to standard statistical tools in distinguishing PSF and PSNF in multidimensional space. Machine learning-based statistical tests can be seen as a natural extension of classical statistics and should be considered, especially when dealing with multifactorial assessments.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33630865</pmid><doi>10.1371/journal.pone.0246790</doi><tpages>e0246790</tpages><orcidid>https://orcid.org/0000-0002-1069-1293</orcidid><orcidid>https://orcid.org/0000-0001-9365-4801</orcidid><orcidid>https://orcid.org/0000-0003-4308-4681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-02, Vol.16 (2), p.e0246790-e0246790
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2493460592
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Artificial Intelligence
Automation
Balance
Basal ganglia
Biology and Life Sciences
Central nervous system diseases
Complications and side effects
Computer and Information Sciences
Computer Science
Datasets
Drafting software
Editing
Geriatry and gerontology
Health risks
Human health and pathology
Hypotheses
Learning algorithms
Life Sciences
Machine Learning
Mathematics
Medicine and Health Sciences
Movement disorders
Neurology
Parkinsonism, Symptomatic
Physical Sciences
Physiological aspects
Posture
Research and Analysis Methods
Signal and Image Processing
Statistical analysis
Statistical methods
Statistics
Visualization
title Revealing posturographic profile of patients with Parkinsonian syndromes through a novel hypothesis testing framework based on machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20posturographic%20profile%20of%20patients%20with%20Parkinsonian%20syndromes%20through%20a%20novel%20hypothesis%20testing%20framework%20based%20on%20machine%20learning&rft.jtitle=PloS%20one&rft.au=Bargiotas,%20Ioannis&rft.date=2021-02-25&rft.volume=16&rft.issue=2&rft.spage=e0246790&rft.epage=e0246790&rft.pages=e0246790-e0246790&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0246790&rft_dat=%3Cgale_plos_%3EA653037933%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2493460592&rft_id=info:pmid/33630865&rft_galeid=A653037933&rft_doaj_id=oai_doaj_org_article_82ec0a87a7cb4f0dbcac4e5b98d307b5&rfr_iscdi=true