A new one-parameter lifetime distribution and its regression model with applications

Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2021-02, Vol.16 (2), p.e0246969-e0246969
Hauptverfasser: Eliwa, M S, Altun, Emrah, Alhussain, Ziyad Ali, Ahmed, Essam A, Salah, Mukhtar M, Ahmed, Hanan Haj, El-Morshedy, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0246969
container_issue 2
container_start_page e0246969
container_title PloS one
container_volume 16
creator Eliwa, M S
Altun, Emrah
Alhussain, Ziyad Ali
Ahmed, Essam A
Salah, Mukhtar M
Ahmed, Hanan Haj
El-Morshedy, M
description Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in estimation step. To open a new opportunity in modeling these kind of data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-G family of distributions. The proposed distribution has only one parameter and simple mathematical forms. The statistical properties of the proposed distributions, including complete and incomplete moments, quantile function and Rényi entropy, are studied in detail. The unknown model parameter is estimated by using the different estimation methods, namely, maximum likelihood, least square, weighted least square and Cramer-von Mises. The extensive simulation study is given to compare the finite sample performance of parameter estimation methods based on the complete and progressive Type-II censored samples. Additionally, a new log-location-scale regression model is introduced based on a new distribution. The residual analysis of a new regression model is given comprehensively. To convince the readers in favour of the proposed distribution, three real data sets are analyzed and compared with competitive models. Empirical findings show that the proposed one-parameter lifetime distribution produces better results than the other extensions of half-logistic distribution.
doi_str_mv 10.1371/journal.pone.0246969
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2491602293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A652345966</galeid><doaj_id>oai_doaj_org_article_ea11bfc5263c4b74bd8bdc52d87d4535</doaj_id><sourcerecordid>A652345966</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b043aabee900ab45a6d8f11b8e132b917f33e37e149c82a37daf76fa86a176403</originalsourceid><addsrcrecordid>eNqNkm-L1DAQxoso3nn6DUQLguiLXZOmTZs3wnL4Z-HgQE_fhmkz3c2SNr0k9fTbm73tHVu5F5JC2ulvnplMniR5ScmSspJ-2NnR9WCWg-1xSbKcCy4eJadUsGzBM8IeH72fJM-83xFSsIrzp8kJY5zwMiOnydUq7fEmjRqLARx0GNClRrcYdIep0j44XY9B2z6FXqU6-NThxqH3-1BnFZr0RodtCsNgdAN70j9PnrRgPL6Y9rPkx-dPV-dfFxeXX9bnq4tFw0UWFjXJGUCNKAiBOi-Aq6qltK6QsqwWtGwZQ1YizUVTZcBKBW3JW6g40JLnhJ0lrw-6g7FeTgPxMssF5STLBIvE-kAoCzs5ON2B-yMtaHkbsG4jwQXdGJQIsXTbFBlnTV6Xea2qWsVPVZUqL1gRtT5O1ca6Q9VgHxyYmej8T6-3cmN_ybISsSMaBd5NAs5ej-iD7LRv0Bjo0Y6HvgUT8Ynom3_Qh083URuIB9B9a2PdZi8qV7zIWF4IziO1fICKS2Gnm3jzrY7xWcL7WUJkAv4OGxi9l-vv3_6fvfw5Z98esVsEE7bemlt3-TmYH8DGWe8dtvdDpkTuzX83Dbk3v5zMH9NeHV_QfdKd29lfqfD_rQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2491602293</pqid></control><display><type>article</type><title>A new one-parameter lifetime distribution and its regression model with applications</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Eliwa, M S ; Altun, Emrah ; Alhussain, Ziyad Ali ; Ahmed, Essam A ; Salah, Mukhtar M ; Ahmed, Hanan Haj ; El-Morshedy, M</creator><contributor>Chen, Feng</contributor><creatorcontrib>Eliwa, M S ; Altun, Emrah ; Alhussain, Ziyad Ali ; Ahmed, Essam A ; Salah, Mukhtar M ; Ahmed, Hanan Haj ; El-Morshedy, M ; Chen, Feng</creatorcontrib><description>Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in estimation step. To open a new opportunity in modeling these kind of data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-G family of distributions. The proposed distribution has only one parameter and simple mathematical forms. The statistical properties of the proposed distributions, including complete and incomplete moments, quantile function and Rényi entropy, are studied in detail. The unknown model parameter is estimated by using the different estimation methods, namely, maximum likelihood, least square, weighted least square and Cramer-von Mises. The extensive simulation study is given to compare the finite sample performance of parameter estimation methods based on the complete and progressive Type-II censored samples. Additionally, a new log-location-scale regression model is introduced based on a new distribution. The residual analysis of a new regression model is given comprehensively. To convince the readers in favour of the proposed distribution, three real data sets are analyzed and compared with competitive models. Empirical findings show that the proposed one-parameter lifetime distribution produces better results than the other extensions of half-logistic distribution.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0246969</identifier><identifier>PMID: 33606720</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Community colleges ; Datasets ; Lifetime ; Likelihood Functions ; Mathematical research ; Mathematics ; Methods ; Models, Statistical ; Parameter estimation ; Parameters ; Physical Sciences ; Probability distribution ; Random variables ; Regression Analysis ; Regression models ; Research and Analysis Methods ; Skewness ; Song ; Statistical analysis</subject><ispartof>PloS one, 2021-02, Vol.16 (2), p.e0246969-e0246969</ispartof><rights>COPYRIGHT 2021 Public Library of Science</rights><rights>2021 Eliwa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 Eliwa et al 2021 Eliwa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b043aabee900ab45a6d8f11b8e132b917f33e37e149c82a37daf76fa86a176403</citedby><cites>FETCH-LOGICAL-c692t-b043aabee900ab45a6d8f11b8e132b917f33e37e149c82a37daf76fa86a176403</cites><orcidid>0000-0001-7474-684X ; 0000-0002-2736-8134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894911/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894911/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33606720$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chen, Feng</contributor><creatorcontrib>Eliwa, M S</creatorcontrib><creatorcontrib>Altun, Emrah</creatorcontrib><creatorcontrib>Alhussain, Ziyad Ali</creatorcontrib><creatorcontrib>Ahmed, Essam A</creatorcontrib><creatorcontrib>Salah, Mukhtar M</creatorcontrib><creatorcontrib>Ahmed, Hanan Haj</creatorcontrib><creatorcontrib>El-Morshedy, M</creatorcontrib><title>A new one-parameter lifetime distribution and its regression model with applications</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in estimation step. To open a new opportunity in modeling these kind of data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-G family of distributions. The proposed distribution has only one parameter and simple mathematical forms. The statistical properties of the proposed distributions, including complete and incomplete moments, quantile function and Rényi entropy, are studied in detail. The unknown model parameter is estimated by using the different estimation methods, namely, maximum likelihood, least square, weighted least square and Cramer-von Mises. The extensive simulation study is given to compare the finite sample performance of parameter estimation methods based on the complete and progressive Type-II censored samples. Additionally, a new log-location-scale regression model is introduced based on a new distribution. The residual analysis of a new regression model is given comprehensively. To convince the readers in favour of the proposed distribution, three real data sets are analyzed and compared with competitive models. Empirical findings show that the proposed one-parameter lifetime distribution produces better results than the other extensions of half-logistic distribution.</description><subject>Community colleges</subject><subject>Datasets</subject><subject>Lifetime</subject><subject>Likelihood Functions</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Regression Analysis</subject><subject>Regression models</subject><subject>Research and Analysis Methods</subject><subject>Skewness</subject><subject>Song</subject><subject>Statistical analysis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm-L1DAQxoso3nn6DUQLguiLXZOmTZs3wnL4Z-HgQE_fhmkz3c2SNr0k9fTbm73tHVu5F5JC2ulvnplMniR5ScmSspJ-2NnR9WCWg-1xSbKcCy4eJadUsGzBM8IeH72fJM-83xFSsIrzp8kJY5zwMiOnydUq7fEmjRqLARx0GNClRrcYdIep0j44XY9B2z6FXqU6-NThxqH3-1BnFZr0RodtCsNgdAN70j9PnrRgPL6Y9rPkx-dPV-dfFxeXX9bnq4tFw0UWFjXJGUCNKAiBOi-Aq6qltK6QsqwWtGwZQ1YizUVTZcBKBW3JW6g40JLnhJ0lrw-6g7FeTgPxMssF5STLBIvE-kAoCzs5ON2B-yMtaHkbsG4jwQXdGJQIsXTbFBlnTV6Xea2qWsVPVZUqL1gRtT5O1ca6Q9VgHxyYmej8T6-3cmN_ybISsSMaBd5NAs5ej-iD7LRv0Bjo0Y6HvgUT8Ynom3_Qh083URuIB9B9a2PdZi8qV7zIWF4IziO1fICKS2Gnm3jzrY7xWcL7WUJkAv4OGxi9l-vv3_6fvfw5Z98esVsEE7bemlt3-TmYH8DGWe8dtvdDpkTuzX83Dbk3v5zMH9NeHV_QfdKd29lfqfD_rQ</recordid><startdate>20210219</startdate><enddate>20210219</enddate><creator>Eliwa, M S</creator><creator>Altun, Emrah</creator><creator>Alhussain, Ziyad Ali</creator><creator>Ahmed, Essam A</creator><creator>Salah, Mukhtar M</creator><creator>Ahmed, Hanan Haj</creator><creator>El-Morshedy, M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7474-684X</orcidid><orcidid>https://orcid.org/0000-0002-2736-8134</orcidid></search><sort><creationdate>20210219</creationdate><title>A new one-parameter lifetime distribution and its regression model with applications</title><author>Eliwa, M S ; Altun, Emrah ; Alhussain, Ziyad Ali ; Ahmed, Essam A ; Salah, Mukhtar M ; Ahmed, Hanan Haj ; El-Morshedy, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b043aabee900ab45a6d8f11b8e132b917f33e37e149c82a37daf76fa86a176403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Community colleges</topic><topic>Datasets</topic><topic>Lifetime</topic><topic>Likelihood Functions</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Regression Analysis</topic><topic>Regression models</topic><topic>Research and Analysis Methods</topic><topic>Skewness</topic><topic>Song</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliwa, M S</creatorcontrib><creatorcontrib>Altun, Emrah</creatorcontrib><creatorcontrib>Alhussain, Ziyad Ali</creatorcontrib><creatorcontrib>Ahmed, Essam A</creatorcontrib><creatorcontrib>Salah, Mukhtar M</creatorcontrib><creatorcontrib>Ahmed, Hanan Haj</creatorcontrib><creatorcontrib>El-Morshedy, M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliwa, M S</au><au>Altun, Emrah</au><au>Alhussain, Ziyad Ali</au><au>Ahmed, Essam A</au><au>Salah, Mukhtar M</au><au>Ahmed, Hanan Haj</au><au>El-Morshedy, M</au><au>Chen, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new one-parameter lifetime distribution and its regression model with applications</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2021-02-19</date><risdate>2021</risdate><volume>16</volume><issue>2</issue><spage>e0246969</spage><epage>e0246969</epage><pages>e0246969-e0246969</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Lifetime distributions are an important statistical tools to model the different characteristics of lifetime data sets. The statistical literature contains very sophisticated distributions to analyze these kind of data sets. However, these distributions have many parameters which cause a problem in estimation step. To open a new opportunity in modeling these kind of data sets, we propose a new extension of half-logistic distribution by using the odd Lindley-G family of distributions. The proposed distribution has only one parameter and simple mathematical forms. The statistical properties of the proposed distributions, including complete and incomplete moments, quantile function and Rényi entropy, are studied in detail. The unknown model parameter is estimated by using the different estimation methods, namely, maximum likelihood, least square, weighted least square and Cramer-von Mises. The extensive simulation study is given to compare the finite sample performance of parameter estimation methods based on the complete and progressive Type-II censored samples. Additionally, a new log-location-scale regression model is introduced based on a new distribution. The residual analysis of a new regression model is given comprehensively. To convince the readers in favour of the proposed distribution, three real data sets are analyzed and compared with competitive models. Empirical findings show that the proposed one-parameter lifetime distribution produces better results than the other extensions of half-logistic distribution.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>33606720</pmid><doi>10.1371/journal.pone.0246969</doi><tpages>e0246969</tpages><orcidid>https://orcid.org/0000-0001-7474-684X</orcidid><orcidid>https://orcid.org/0000-0002-2736-8134</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2021-02, Vol.16 (2), p.e0246969-e0246969
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2491602293
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Community colleges
Datasets
Lifetime
Likelihood Functions
Mathematical research
Mathematics
Methods
Models, Statistical
Parameter estimation
Parameters
Physical Sciences
Probability distribution
Random variables
Regression Analysis
Regression models
Research and Analysis Methods
Skewness
Song
Statistical analysis
title A new one-parameter lifetime distribution and its regression model with applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20one-parameter%20lifetime%20distribution%20and%20its%20regression%20model%20with%20applications&rft.jtitle=PloS%20one&rft.au=Eliwa,%20M%20S&rft.date=2021-02-19&rft.volume=16&rft.issue=2&rft.spage=e0246969&rft.epage=e0246969&rft.pages=e0246969-e0246969&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0246969&rft_dat=%3Cgale_plos_%3EA652345966%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2491602293&rft_id=info:pmid/33606720&rft_galeid=A652345966&rft_doaj_id=oai_doaj_org_article_ea11bfc5263c4b74bd8bdc52d87d4535&rfr_iscdi=true